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Abstract. A combined runoff-sediment model is used to simulated soil erosion processes and predict soil
loss of land surface. The Stanford Watershed Model (SWM) is used as runoff generator for this model. Effects
of sensitive parameters errors on soil erosion characteristics are investigated. These characteristics include
peak erosion and mean monthly erosion rates. Three different methods are used for the analysis, namely;
first-order uncertainty analysis method; direct investigation technique and mean-maximum likelihood
method. The aim is to quantify sensitive parameters errors propagation and to gain an appreciation of the
approximate magnitudes of model output uncertainty caused by different levels of sensitive parameters
uncertainty. Model output uncertainty ranges between (4.000-83.113)% for mean monthly erosion against
(4.680-83.098)% for peak erosion. Uncertainty in simulated erosion due to sensitive parameters uncertainty
is subsequently analyzed. The probability of peak erosion values occurrence due to sensitive parameters
error are investigation. Based on the result obtain, high and moderately parameters are identified.
Appropriate conclusion are drawn and suggestion for future work are introduced.

Key words: Soil erosion, first-order uncertainty analysis, direct investigation, mean-maximum likelihood,
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INTRODUCTION

Basic to all engineering problems is design and basic
of all design are measurements and wherever
measurements are made, errors are made, the single
exception being when the measurement is a discrete
count. Since no measurement is free from error, steps
must be taken to evaluate the accuracy and the precision
of the measurement. To preclude a falls sense of
accuracy, one must investigate the nature of error, as
well as the sources, types and magnitude of error made
of various stages of the measurement operation and the
interrelation among errors (Austin, 1978). The planning
and management of water resource system are
dependent upon information relating to the spatial and
temporal distribution to provide for the reduction of
precise information and therefore, planning and
management decisions are subjected to hydrological
uncertainty in addition to uncertainties of a non-
hydrological nature (Ali, 1998). Level recorder data
usually contain errors. In order to attain maximum
reliability, the size of errors in recorded data should be
reduced to as much as possible. The best way of
reducing errors is prevention. The effectiveness of an
error  prevention procedure depends on filed
precautions, the quality and frequency of field checks
and field check reports regarding the quality of
equipment and their maintenance (Van Der Schaaf,

1984). Data collected over years are organized in variety
of formats and stored on various media. Transformation
and management of data are often tedious and difficult.
In the current literature, so many studies deal with the
major sources of modeling uncertainty (Ali, 1998; Austin,
1978; Borah and Haan, 1990). Errors in simulation occur
for a number of reasons, among them:

1. Model parameter estimates.

2. Input data, consisting of climate, topography,
vegetation type, soil characteristics and antecedent
conditions which vary throughout the watershed and
cannot be precisely measured.

3.  Physical laws of fluid motion are unduly simplified
(Hromadka and McCuen, 1989).

Error in hydrological models have been analyzed from
different viewpoints using a variety of approaches. An
important topic is the estimation of error bounds on
simulated and sediment yield graphs produced using
complex watershed models.

Estimation of the model parameters: Parameters
estimation is the process by which the parameters of a
hydrological model are estimated for particular
application. Model parameters should a symptomatically
approach their true values as the amount of information
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used for estimation gets very large (Haan, 1995).
Parameter estimation is made more difficult by
increasing the number of parameters to be estimated,
the lack of correspondence between individual
parameters and measurable physical properties of the
catchment, multiple objectives, limited data and
pronounced seasonality in hydrological regime. Some
criteria that might be used for estimating model
parameters include (Haan, 1989):

1. Direct measurement of physical properties in the
field or in the lab.

2. Indirect measurement of physical properties
through their relationships with other hydrological
processes and watershed characteristics.

3. Compliance with published tables and charts.

4. Optimization of some objective functions.

5. Personal judgment of goodness of fit of simulated

hydrographs to observed hydrographs.

Parameter estimation for hydrological models may he
difficult because (Fleming, 1975):

1. Errors in data.

2. Amount of computations involved in many models.

3. Restriction on appropriate values for some of the
parameters.

4. Thresholding in some of the model relationships.

5. Specification of appropriate criteria for parameter
selection.

6. Correlation among parameters.

Study objectives: The current study is aimed to satisfy
the following objectives:

1. To identify errors bounds of simulated erosion due
to uncertainty in model sensitive parameters
estimated values.

To provide an estimate of percentage error in
simulated erosion due to the utilization of errors
contaminated input data.

To provide an estimate of the probability of the
occulting of the Peak simulated erosion due to the
utilization of errors contaminated input data.

MATERIALS AND METHODS

The models used in this study: The complicated nature
of sediment problem indicates the need to use highly
reliably compressive and physically best simulate model
to assess soil erosion output {(Al-Kadhimi, 1982). The
models used in this study are as follows:

Stanford Watershed Model (SWM): The criginal version
of this model (SWIM-1V), developed by Linsely and Kihler
(1975), has undergone numerous modifications and
reversions. SWM is a conceptual, lumped, continuous
and general used model consisting of a number of
storage units with flow between them prescribed by
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approximate physically based relationships. These
relationships are generally expressed as functions of
the current storage and physical characteristics of each
unit. Data requirements are related by the use of these
approximate expressions, which requires the use of
fitted parameters (El-Kadi, 1989; Hussein, 1998). The
model is based on water-balance accounting within the
catchment boundary, catchment units represent differing
soil types, vegetation, land use, physical characteristics
and precipitation are defined as catchment segments.
Each segment is described by a set of parameters
representing specific physical features of the segment.

The land erosion model: In the modeling of soil erosion
from the land surface, the land erosion model
subdivides the catchment into three segments by
altitude, i.e., upland, midland and lowland. Each
segment is characterized by a width ~ length and slop.
This representation is shown in Fig. 1. The amount of
soil of each particle size fraction available to the agents
of erosion in each segment is represented in the model
by the top soil storage (Fig. 2). The storage of each
particle size is enhanced or depleted by the input or
output rates. However, the model constrains this
process by maintaining the total mass of top soil
storage at a constant value, ie., there is always the
same amount of total soil available to the agents of
erosion. This is chivied in the model by the Top Soil
Exposure Function (TSE) in Fig. 2. The distribution of the
particle size within this top soil store, however, does not
remain constant. The erosion output rate depletes the
storage of the most erodible particle size at a much
faster rate than the less erodible particle sizes. Thus, in
the obscene of soil disturbance, the erosion rate will
deplete the top soil storage by removing much fines and
only relatively little of the coarser particle size, while the
top soil exposure rate entrances the total top soil at an
overall rate equals to the gross removal rate, thus
keeping the storage constant. But since the top soil
exposure rate supplies the top soil storage by particle
size amount similar in distribution to the surrounding
subsoil, the rate of removal of fines is then bound to be
greater than their rate of replenishment and the opposite
is true for the less erodible particles. Accordingly, the
particle size distribution of the top soil becomes coarser
with time and the layer itself becomes armored. Erosion
from an upslope segment feed the top soil store with
relatively fine soil. If the rate of erosion from upslope
exceeds the erosion on the current segment then the
deposing this relatively fine materials occurs. This soil
enters deposition storage wih may or may not be a
temporary storage state. In very flat slopes, deposition is
always occurring on such slopes. The erosion from
upslope always exceeds the current erosion and
consequently the deposition storage grows continuously
and erosion takes place from this deposition storage . In
many cases, however, this deposition may build up over
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m The part of land segment contributing water and
sediment to down slope segment

m The part of land segment contributing water and
sediment to channel network

Fig. 1. Representation of a catchment by land erosion
model (Hussein, 1998)

T Deposition storage T
Particle size amount
Top soil storage
Particle size amount
[Top Sail Exposure (TSE)

Disturbance (DIS)

Parent soil by particle size

Fig. 2: Top soil storage representation in the land
erosion model (Hussein, 1998)

time as temporary store of erodible soil a waiting an
extreme storm event, with the highly erosional
combination of intense rainfall and substantial overland
flow. Such a combination would wash the erodible
material into the channel system. In the obscene of
erosion, soil disturbance feeds the top soil store with
sediment from beneath. Such sediment the particle size
distribution of the gross soil and thus contains a
relatively higher proportion of fines than does the
armored top soil. In such case the top soil exposure
would then become negative, its rate being such the
total amount of top soil store remains constant (Al-
Kadhimi, 1982; Hussein, 1998).

Linkage to runoff component {(Runoff Sub-Model): In its
simulation of soil erosion, the land erosion model
utilized hourly rainfall and runoff generated and stored to

a modified version of Stanford watershed model. The
Stanford watershed model was modified to enable
catchment segmentation (El-Kadi, 1989). Catchments
segmentation provides better representation of spatial
variation of hydrologic, topographic, climatic and vegetal
processes. A physically based routing procedure similar
to that of (HSP) model was used instead of the original
empirical one. Surface runoff is generated on hourly
basis by the model and stored together with rainfall on
certain computer storage. The land erosion model
utilizes these data and use them in conjunction with its
input data to simulate sediment yield from the
catchment.

Input data requirements: Input data to land erosion
model can be classified into three groups:

i.  Hydrologic data.
ii. The model process parameters.
iii. Calibration and verification data.

Description of these data types are shown in Table 1.

Process parameters have been sub-divided in Table 2

into three categories:

a. Parameters estimated from
characteristics.

b. Coefficients estimated from laboratory and field
experimentation.

¢c. Parameters estimated by trial calibration and
adjustment.

physical

Theory and results: Erosion of a catchment is
considered as the final result of the interaction between
the physical and climatic characteristics of the
catchment. In this chapter, the effects of input data
errors on simulated erosion are investigated. The
analysis includes simulation of erosion of two cases,
sensitive land erosion parameters and physical
characteristics of catchment. The theories that are
used to analysis the effects of data-base errors on
simulated erosion are describe, these theories can be
classified as:

1. First-order uncertainty analysis.

2. Direct investigation method ( Reliability and its
parameters).

3.  Mean-maximum likelihood analysis.

First order uncertainty analysis: A description of First-
Order Uncertainty Analysis (FOA) will be given here. The
(FOA) is useful in obtaining approximate means and
variances for random variables, the base of
approximations is a truncated Taylor series.
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Table 1: Input data requirement for the land erosion model {Al-Kadhimi, 1982)

Data type Description

Hydrological data
Muodel process parameters

Hourly rainfall, both intercepted and un intercepted obtained from runoff sub model.
Parameters estimated from physical characteristics. Constants obtained from lab and field

experimentation. Parameter obtained by calibration.

Calibration and verification data

Monthly sediment yield from sediment rating curve.

Table 2: Model process parameters (Al-Kadhimi, 1982)

Parameter

Description

a. Parameters estimated from catchment characteristics

Length Segment length (m)

Width Segment width (m)

Slope Segment slope.

Chan Proportion of segment contribution to channel network, percent
ORGCON Organic content

PS Particle size (mm)

b. Coefficient obtained from laboratory and field experimentation
c. Parameters obtained by calibration
CDIS

Top soil disturbance rate

Theory: Let us assume a function y = g(x). If the
coefficient of variation is not large (depends upon the
degree of non-linearity of g(x) in the region around the
mx, the following approximations are valid:

E(y) = E[g(9] = 9(E[x]) M

Var. [y] = Var.[g(x)] = Var.[x] (dgg”mx} @)

or:

oy = dg(X)|m>< ox 3
y dx

Where:
¥|mx:8ignified the derivative of g(x) with
X

respect to x, at mx

E: The expected value.

Var. The variance.

. The standard deviation.

mx: The main value of the variable x.

The justification for these approximations lies in the
observations that the variance of x is small, x is very likely
to be lie close to mx and hence a Taylor series
expansion of g(x) about mx is suggested:

g0 = g + (x-mx) [%\mx] b —mx)’ {dzg(x)|me + -

2 dx?
4

Keeping the only first two terms in the expansion and
taking the expectation of both sides, we obtained the
stated approximation for E[g(x)], since E[x - mx] = O.
Similarly, by keeping the same terms and finding the
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variance of both sides yields the approximation in
equation (2), since Var.[g{mx)] = 0 and:

var. {M\mx](x - mx)} = (dg(x)mxl2 (5)
dx dx

Clearly, if the coefficient of variation of x is less than 10%,
the error involved in this approximation is less than 1%.
Moreover, in order to use this method, equation (5)
showed be written as:

n

Var.[y] = Z(;(yiluxi] Var.[xi] &)

i=1

In which uxi = The mean value of parameter xi (Al
19938).

Reliability and its parameters (Direct investigation
method):. In order to proceed further with uncertainty and
error evaluation, the various parameters of reliability
need to be explained and as follows:

Mean: The best known and most useful "average" is the
arithmetic mean, usually referred to as the mean; it is'
calculated by adding all observation and dividing the
sum by the total number of observations (Benjamin et
al., 1970).

Scatter: The way that the different value lie about this
average is called the dispersion or scatter. Scatter is
used to study certainty and uncertainty. Scatter of the
values in a set of observations is an indication of their
reliability. Wide dispersal bespeaks less reliable
data than observations that lie closely distributed
about the mean (Benjamin et a/, 1970; Hudson, 1981).



Pak. J. Nutr., 11 (6): 511-522, 2012

Variance and standard deviation: The mean deviation
dose not tell the manner in which the values dispersed.
Indeed, one set of measurement may have errors of
variable sizes, several very large, a few mediums and
several very small. Yet both sets of measurements may
have the same average error. Comparing the mean
deviation of the two sets of data would give a false
indication. In mean deviation, there would bhe no
indication of the distribution (scatter) of the values in
each set. There would be no penalty for large errors and
no reward for small ones. Fortunately, a better and more
usually used measure at scattering is the standard
deviation. This is the square root of the mean of the
square of the deviations (variations) of the ohservations
from their arithmetic mean. It is usually symbolized by
small sigma (o)and is also frequently called the mean
square error. Another measure of the scatter is variance,
defined as the square standard deviation. The
Coefficient of Variation (CV) may also be used and is
defined as a ratio of the standard deviation to the mean
of a given sampler or set (Austin, 1978; Haan, 1995,
Harpar, 1989).

The mean and the maximum likelihood method: When
many measurements give different result, we often
average results. Common sense suggests that the
average will be a true measure than individual
measurements, which can be distorted by quirks in the
measuring process. In  certain  circumstances,
mathematical theory justified the common sense
approach. To investigate this, we introduce the normal
curve (Walter, 1984). The bell-shaped curve is the
normal probability density curve but its use as a tool is
rather limited. Frequently, a simple variant of this curve
can be used, namely, the normal probability distribution
curve (Austin, 1978). Because so many measurement
processes involve normal density curves, we need
some special information about them. A curve with the
equation:

R @)

ov2n

A specific interpretation of is contained in the following
rules:

1. Approximately 68% of the area under a normal curve
is contained between the line x = p-oand x = p+a.

2. Approximately 95% of the area under a normal curve
is contained between the line x = p-20 and x = p+2o.

3. Approximately 98% of the area under a hormal curve

is contained between the line x = p-30 and x = p+30.

The area under probability density curve between x = a
and x = b represents the probability that x (a particular
measurement) will have a value between aand b.
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1
ov2n

S ®

Lwa)= |

This integral is not easily evaluated. There are tables
that will help (Borah and Haan, 1990; Fiorentino and
Gabriele, 1984).

Methodology of the analysis: Hussein (1998) used a
natural soil erosion data for AL-EZAME catchment in
IRAQ to calibrated the Land Erosion Model and make the
sensitivity analysis for the model parameters, below is
a brief explanation of the sensitive land erosion model
parameters:

1. The coefficient of soil detachability by rainfall
(CDTCHP).

2. The coefficient of proportionality in the function of
detachment by rainfall (CSPL).

3. The coefficient of proportionality in the function of
detachment by runoff (CSCR).

4. The coefficient of effective friction (CEFFIC).

5.  The coefficient of top soil disturbance rate (CDIS).

6. The coefficient in the function which expresses the

up lift distance of a particle (EXPY).

The analysis of the effects of input sensitive parameters
errors oh simulated erosion was done in three
directions, these are:

First order uncertainty analysis method: Even for a
moderately complex model, it is usually impossible to
obtain analytical expression for the partial derivative
needed for the first order equations. Means and
standard deviations for the model parameters and initial
values of the simulated erosion were chosen. The
model was initially run using the mean parameter
values to obtain the first order approximation to the
mean simulated erosion. The model was then rerun
repeatedly, incrementing each parameter one at a time
by a small amount Ax (Ax = 0.05ux was used here where
px is the mean value of the parameter). After each
running, the affected parameter was returned to its
mean value. The change in output due to a change in
parameter value, AE/Ax, is an approximation of the
partial derivative of the model with respect to a specific
used parameter. Partial derivatives were calculated for
each month of the simulation. After the model had been
rerun for all uncertain parameters, the calculation in
equation (6) was performed to obtain the variance for
each month erosion, thus giving approximate error
bounds on the output due to uncertainty in the
parameters.

Direct investigation method: Errors were introduced to
each sensitive land erosion parameter value in a
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Table 3: The walue of the sensitive parameter and the
parameters error
Calibrated Parameter
value error
Parameter (Hussein, 1598) Error% value
CDTCHP 144.000 +15 165.600
+10 158.400
+5 151.200
-5 136.800
-10 129.600
-15 122.400
CSPL 5.205x10° +15 5.986x10°
+10 5.726x10°
+5 5.465x10°?
-5 4.945x10°3
-10 4.684x10°
-15 4.42:x10°
CSCR 5.350 +15 6.153
+10 5.885
+5 5618
-5 5.083
-10 4.815
-15 4.548
CEFFIC 1.000 +15 1.150
+10 1.100
+5 1.050
-5 0.950
-10 0.900
-15 0.850
cDIs 1.000 +15 1.150
+10 1.100
+5 1.050
-5 0.950
-10 0.900
-15 0.850
EXPY 2.000 +15 2.300
+10 2.200
+5 2.100
-5 1.900
-10 1.800
-15 1.700

percentage of = (5, 10, 15). The error values of the
parameters are shown in Table 3. The effects of errors

in the above cited parameters on simulated erosion are
investigated.

Mean-maximum likelihood method: If each sensitive
parameter in land erosion model has two sets of values
due to percentage + (5, 10, 15) errors and percentage
- (5, 10, 15) errors in basic values respectively. The peak
erosion values have also two sets. To know which the
set of peak erosion values can be considered and to find
the final value of peck erosion, the mean-maximum
likelihood method is used.

RESULTS AND DISCUSSION

Table 3 show the basic values of studied parameters
together with their error values. These values were then
used in the model to simulate land soil erosion.
Simulated erosion values thus obtained were then
analyzed using the three above maintained methods,
i.e., first order uncertainty analysis method, direct
investigation method and mean-maximum likelihood
method and as follows:

First-order uncertainty analysis method: Table 4-9
show the variance of monthly simulated erosion due to
error (5%) in the values of the parameters CDTCHP,
CSPL, CSCR, CEFFIC, CDIS and EXPY. Figure 3-8 show
error bounds on monthly simulated erosion for these
parameters. Form the analysis the standard deviation
was varied from (0.01186) for parameter (EXPY) to (0.023)
for parameter {(CSPL). The Coefficient of Variation (CV)
obtained in the range of (0.01176) for parameter (EXPY)
to (0.026) for parameter (CSPL).The obtained model
variance with respect to parameters (EXPY) and (CSPL)
are in the range (22.9 x 1-2 to 1.2 x 10-5) and in the
range (2.54 x 10-3 to 2.5 x 10-7), respectively. The model
variance with respect to each other parameter are
approximately the same and obtained in the range (1 x
10-2to 2.5 x 10-7). From the results, it was found that the

Table 4: First-order-uncertainty analysis for monthly erosion due to error in parameter (CDTCHP)

Parameter Parameter value {ux) Error% Parameter error value A Var. (x)

CDTCHP 144 +5% 151.2 7.2 12.96
Simulated erosion Simulated erosion

Month value (E) error value AE (2E/xi) Var. (E)

Oct. 1.5 1.4 -0.1 -0.014 2.54x10°3

Nowv. 2.2 21 -0.1 -0.014 2.54x10°3

Dec. 0.026 0.025 -0.001 -0.14x10°3 2.5¢107

Jan. 0.16 0.15 -0.01 -1.4x10° 2.5:10°

Feb. 4.1 3.9 -0.2 -0.028 0.01

Mar. 2.0 1.9 -0.1 -0.014 2.54x10°3

Apr. 0.084 0.08 -0.004 -0.56x10 4x10°

May. 0.37 0.36 -0.01 -1.4x10° 2.5%x10°

Jun. 0 0 0] 0 0

Jul. 0 0 0] 0 0

Aug. 0 0 0] 0 0

Sep. 0 0 0 0 0
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Table 5: First-order-uncertainty analysis for monthly erosion due to error in parameter (CSPL)

Parameter Parameter value (uxi) Error% Parameter error value Axi Var. (x)

CSPL 0.005205 +5% 0.005465 2.6x10¢ 1.69x10°
Simulated erosion Simulated erosion

Month value (E) error value AE {IE/I) Var. (E)

Oct. 1.5 1.6 0.1 384.615 25103

Nov. 22 23 0.1 484.615 25103

Dec. 0.026 0.027 0.001 3.846 25107

Jan. 0.16 0.17 0.01 38.461 2.5%x10°

Feb. 4.1 4.3 0.2 769.231 0.01

Mar. 20 21 0.1 384.615 2.54x10°3

Apr. 0.084 0.088 0.004 15.385 4x108

May. 0.37 0.39 0.02 76.923 1x10*

Jun. 0 0 0] 0 0

Jul. 0 0 0] 0 0

Aug. 0 0 ] 0 0

Sep. 0 0 0 0 0

Table 6: First-order-uncertainty analysis for monthly erosion due to error in parameter (CSCR)

Parameter Parameter value {px) Error% Parameter error value A Var. (x)

CSCR 5.35 +5% 56175 0.2675 178.9x10°
Simulated erosion Simulated erosion

Month value (E) error value ME (FE/3xi) Var. (E)

Oct. 1.5 1.44 -0.06 -0.224 8.981x10*

Nov. 22 2112 -0.088 -0.329 1.937x107

Dec. 0.026 0.025 -0.001 -0.004 2.5x107

Jan. 0.16 0.153 -0.007 -0.026 1.2x10°

Feb. 4.1 3.936 0.164 0.613 6.726x10°

Mar. 20 1.92 -0.08 0.3 1.611x10°

Apr. 0.084 0.081 -0.003 -0.011 2.166x10°

May. 0.37 0.355 -0.015 -0.056 5.613x10°

Jun. 0 0 o] o] o]

Jul. 0 0 0] 0] 0]

Aug. 0 0 0 0 0

Sep. 0 0 0 0 0

Table 7: First-order-uncertainty analysis for monthly erosion due to error in parameter (CEFFIC)

Parameter Parameter value {uxi) Error% Parameter error value A Var. (x)

CEFFIC 1.000 +5% 1.050 0.050 6.25¢10*
Simulated erosion Simulated erosion

Month value (E) error value AE [EISE] Var. (E)

Oct. 1.5 1.600 0.100 2.000 2.5x10°

Nov. 22 2.300 0.100 2.000 2.5x10°

Dec. 0.026 0.027 0.001 0.020 2.5x107

Jan. 0.16 0.170 0.010 0.200 2.5x10°

Feb. 4.1 4.300 0.200 4.000 10x10°

Mar. 20 2100 0.100 2.000 2.5x10°

Apr. 0.084 0.088 0.004 0.080 4x10°

May. 0.37 0.390 0.02 0.400 1x10*

Jun. 0 0 o] o] o]

Jul. 0 0 o] o] o]

Aug. 0 0 0 0 0

Sep. 0 0 0 0 0

parameter (EXPY) is very sensitive and the parameters (-12.195%) on peak erosion and (-5.023%) to

(CSPL) is insensitive parameter. Other parameters are (-13.264%) on mean monthly erosion, All error of

moderately sensitive. (-5 to -15)% cases an error of about (4.878%) to

(17.073%) on peak erosion and (5.126%) to

Direct investigation method: Table 10 show statistical (16.471%) on mean monthly ercsion the Coefficient

evaluation of the effects of individual sensitive of Variation (CV) is varies from (0.0258 to 0.0710)

parameters errors on simulated erosion. Results were for positive errors and from (0.025 to 0.0761) for

ahalyzed as in the below: negative errors. The effects of negative errors are

1. Errors of (+5 to +15)% in the value of the parameter more than that of positive ones, as shown in

(CDTCHP) causes errors of a bout (-4.878%) to Fig. 9.
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Table 8: First-order-uncertainty analysis for monthly erosion due to emor in parameter (CDIS)

Parameter Parameter value {ux) Error% Parameter error value A Var. (x)

CcDIS 1.000 +5% 1.050 0.050 6.25x10*
Simulated erosion Simulated erosion

Month value (E) error value ME (FE/axi) Var. (E)

Oct. 1.5 1.582 0.082 1.640 1.681x10°

Nov. 22 2320 0.120 2.400 3.6x10°

Dec. 0.026 0.027 0.001 0.020 2.5x107

Jan. 0.16 0.169 0.009 0.180 2.025x10°®

Feb. 4.1 4.323 0.223 4.446 12x10°

Mar. 20 2.109 0.109 2.180 2.97x10°

Apr. 0.084 0.088 0.004 0.080 410"

May. 0.37 0.390 0.02 0.400 1x10*

Jun. 0 0 o] o] o]

Jul. 0 0 0 0 0

Aug. 0 0 0 0 0

Sep. 0 0 0 0 0

Table 9: First-order-uncertainty analysis for monthly erosion due to error in parameter (EXPY)

Parameter Parameter value (uxi) Error% Parameter error value Axi Var. (x)
EXPY 2.000 +5% 2.100 0.100 2.5¢10°2
Simulated erosion Simulated erosion
Month value (E) error value MNE (FE/axi) Var. (E)
Oct. 1.5 1.900 0.400 4.000 40x10°3
Nov. 22 2786 0.586 5.860 86x10°3
Dec. 0.026 0.033 0.007 0.070 1.2x10°
Jan. 0.16 0.203 0.043 0.430 4.622x10*
Feb. 4.1 5.193 1.093 10.930 228x10°°
Mar. 20 2533 0.533 5.330 71x103
Apr. 0.084 0.106 0.022 0.220 1.21x10*
May. 0.37 0.469 0.099 0.990 24 5x10
Jun. 0 0 o] o] o]
Jul. 0 0 0 0 0
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Fig. 3. Error bounds for monthly erosion due to error
(5%) in parameter value (CDTCHP) Fig. 4. Error bounds for monthly erosion due to error
(5%) in parameter value (CSPL)
2. Errors of (+5 to +15)% in the value of the parameter
(CSPL) causes errors of about (4.878%) to 3. Errors of (+5 to +15)% in the value of the parameter

(14.634%) on peak erosion and (5.126%) to (CSCR) causes errors of about (-4.000%) to
(14.437%) on mean monthly erosion. Negative (-13.610%) on peak erosion and (-4.000%) to
errors have approximately the same effects, as (-13.609%) on mean monthly erosion. An error of
shown in Fig. 10. The Coefficient of Variation (-5 to-15)% causes an error of error about (4.805%)
(CV) is varies from {0.0250 to 0.0673) for positive to (20.000%) on peak erosion and (4.805%) to
errors and from (0.0263 to 0.0822) for negative (19.98%) on mean monthly erosion the Coefficient
errors. of Variation (CV) is varies from (0.0204 to 0.0730)
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Fig. 5: Error bounds for monthly erosion due to error Fig. 8: Error bounds for monthly erosion due to error
(5%) in parameter value (CSCR) (5%) in parameter value (EXPY)
4.5 u=0.892 —— U Table 10: Statistical evaluation of the effects of individual
416 =0.0223 —A— Jto sensitive parameters errors on erosion
E —~ 357¢cv=0.025 —o— Y-c Error%
S E 31
g; 2.54 Parameter Error% MME PE CV
« \Cl 2 CDTCHP +15 -13.264 -12.195 -0.0710
%‘.g 1.5 +10 -9.103 -9.756 -0.0477
‘g' o] 1 +5 -5.023 -4.878 -0.0258
s o 0.5 -5 5126 4878 0.0250
0 -10 12.299 12.195 0.0532
O 5= —=5= -15 16.471 17.073 0.0761
8 § 8 = L‘E g 2— g 3 3 2 $ CSPL +15 14.437 14.634 0.0673
Month +10 9287 9.756 0.0444
ont +5 5.126 4.878 0.0250
Fig. 6: Error bounds for monthly erosion due to error 13 1?;32 :;?;g :g'gggg
(5%) in parameter value (CEFFIC) 15 15195 14,634 0.0822
CSCR +15 -13.609 -13.610 -0.0730
457 4=0.892 —— +10 -8.048 -8.000 0.0419
- 416 =0.022 —— [+C +5 -4.000 -4.680 -0.0204
S 357 ¢cv=0.024 —o— o -5 4.805 4.805 0.0235
SE -10 11.986 12.000 0.0566
£ = -15 19.989 20.000 0.0909
i g CEFFIC +15 14.437 14.634 0.0673
,E_, ‘@ +10 9.287 9.756 0.0444
g g +5 4172 4878 0.0204
= -5 -5.126 -4.878 -0.0263
0 -10 -11.989 -9.756 -0.0638
0.5 3338 58 E§53532¢ -15 -18.874 -14.634 -0.1042
Oz >»uw =<s > 2w CDIS +15 12.724 12.732 0.0598
+10 10.862 10.902 0.0515
Month +5 5.437 5.439 0.0265
. ) . -5 -9.103 -9.098 -0.0786
Fig. 7: Error.bounds for monthly erosion due to error 10 14575 14634 00786
(5%) in parameter value (CDIS) -15 -19.103 -19.098 -0.1058
EXPY +15 66.667 66.659 0.2500
for positive errors and from (0.0235 to 0.0909) for +10 47.782 47.805 0.1928
negative errors The effects of negative errors are 5 26.655 26.659 0.1176
more than that of positive ones, as shown in Fi - -36.115 -36.008 -0.2204
P ' 9. -10 -50.448 -50.439 -0.4320

11. -15 -83.115 -83.008 05518
4. Errors of (+5 to +15)% in the value of the parameter MME = Mean Monthly Erosion; PE = Peak Erasion

(CEFFIC) causes errors of about (4.878%) to

(14.634%) on peak erosion and (4.172%) to than that of position ones. The Coefficient of
(14.437%) on mean monthly erosion. Figure 12 Variation (CV) is varies from (0.0204 to 0.0673) for
show that that errors have the same effects on peak positive errors and from (0.0263 to 0.1042) for
erosion. The effects of the negative errors are more negative errors.
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Fig. 11: Percent error in monthly erosion due to error in

5.

parameter (CSCR)

Fig.

Errors of (+5 to +15)% in the value of the parameter
(CDIS) causes errors of about (5.439%) to
(12.732%) on peak erosion and (5.437%) to
(12.724%) on mean monthly erosion. An error of (-5

to -15%) causes an error of about (-9.098%) to

(-19.098%) on peak erosion and (-9.103%) to
(-19.103'%) on mean monthly erosion the effects of
the negative errors are more than that of position

ones, as shown

in Fig. 13. The Coefficient of
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Variation (CV) is varies from (0.0265 to 0.0598) for
positive errors and from (0.0786 to 0.1056) for
negative errors.

Error of (+5 to + 15)% in the value of the parameter
(EXPY) causes errors of about (26.659%) to
(66.659%) on peak erosion and (26.655%) to
(66.667%) on mean monthly erosion. An error of
(-5to -15)% causes all error of about (-36.098%) to
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Table 11: Mean-maximum likelihood analysis for individual sensitive land erosion parameters error

Peak erosion Mean of set Probability Cons. Consideration peak
Parameter Errar% Set (T/km?) values (T/km?) of aceurring set erosion (T/km?)
CDTCHP +15 A 3.6 3.733 0.946 B 4.567
+10 3.7
+5 39
-5 B 4.3 4.567 0.971
-10 4.6
-15 4.8
CSPL +15 A 4.7 4.5 0.979 A 4.5
+10 4.5
+5 4.3
-5 B 39 37 0.962
-10 37
-15 3.5
CSCR +15 A 3.542 3.75 0.967 B 4.603
+10 3.772
+5 3.936
-5 B 4,297 4.603 0.978
-10 4,592
-15 4.92
CEFFIC +15 A 4.7 4.5 0.979 A 4.5
+10 4.5
+5 4.3
-5 B 39 37 0.962
-10 37
-15 3.5
CcDIS +15 A 4.622 4.497 0.922 B 3.515
+10 4.547
+5 4.323
-5 B 3.727 3.515 0.973
-10 35
-15 3.317
EXPY +15 A 6.833 6.029 0.976 A 65.029
+10 6.06
+5 5.193
-5 B 2.62 1.823 0.95
-10 1.663
-15 1.185
Cons. = Consideration
(-83.098%) on peak erosion and (-36.115%) to 2. For parameters (CSPL, CEFFIC and EXPY), the

Mean-maximum

(-83.115%) on mean monthly erosion the effects of
the negative errors are more than that of position
ones, as shown in Fig. 14. The Coefficient of
Variation (CV) is varies from (0.1176 to 0.2500) for
positive errors and from (0.2204 to 0.5518) for
negative errors.

likelihood method: The mean-

maximum likelihood method is applied to determine the
probability of occurring of each positive and negative
errors sets in sensitive land erosion parameters. The
results are tabulated in Table 11.

Results were analyzed as in the below:

1.

For parameters (COTCHP, CSCR and CDIS), the
probability of occurring negative errors set is greater
than that of positive one. The considered peak
erosion values are equal to (4.567, 4.603 and 3.515
T/km?), respectively.

probability of occurring positive errors set is greater
than that of negative one. The consideration peak
erosion values are equal to (4.5, 4.5 and 6.029
T/km?), respectively.

Conclusions: Based on the results obtained in this study
the following conclusions can be drawn:

2.

521

First-order uncertainty analysis can successfully be
used to quantify error propagation and the
associated uncertainty in model output.

Results of direct investigation of simulated soil
erosion regarding error contaminated process
parameters, reveal the following conclusions:

The parameter (EXPY) is more sensitive in peak
and mean monthly erosion.

The parameters (CDTCHP, CSPL, CSCR, CEFFIC
and CDIS) proved to be sensitive.
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Recommendations: The following recommendations
are suggested for further studies:

1. Collection of quality field data regarding the various
sources of soil erosion.

2. Conduct a real catchment simulation of soil
erosion.

3. The use of first-order uncertainty analysis in
conjunction with more complex watershed models.

4. Assessing parameter errors effects on soil erosion
with wider ranges of uncertainties in model input
data.
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