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Abstract: |n this paper, an indirect boundary element method is used to give solution for surface as well as
ground water bodies which are major nutrition fluids. The inviscid compressible flow (i.e., velocity
distribution) over the surface of the joukowski aerofoil has been calculated with linear element approach
using doublet distribution alone whereas in our previous research papers, we applied constant boundary
element approach for this purpose. To check the accuracy of the method, the computed flow velocity is
compared with the exact velocity. The comparison of these results has been given in the tables and graphs.
It is found that the computed results are in good agreement with the analytical results.
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INTRODUCTION

Boundary element methods are normally used to find
the velocity distribution over the surface of water body
which is main nutrition source. In addition to problem
related to water resources, this technique can be used
to calculate inviscid compressible flow (i.e., velocity
distribution) over the surface of a Joukowski aerofoil.

It has always been a struggle in fluid flow modeling to
find more efficient numerical methods that can be used
to solve a complicated system of Partial Differential
Equations (PDE) of fluid flows. The calculation of
practical flows was made possible over time by the
development of many numerical techniques, such as the
finite difference method, the finite element method, the
finite volume method and the boundary element method.
These methods which have evolved with the discovery of
new algorithms and the availability of faster computers,
are CPU time and storage hungry. One of the
advantages of the boundary element method is that the
entire surface of the body has to be discretized, whereas
with domain methods it is essential to discretize the
entire region of the flow field. The most important
characteristics of the boundary element method are the
much smaller system of equations and the considerable
reduction in data, with the latter being a prerequisite to
run a computer program efficiently. These methods have
been successfully applied in a number of fields,
including elasticity, potential theory, elastostatics and
elastodynamics (Brebbia, 1978; Brebbia and Walker,
1980). Furthermore, this method is well suited to
problems having an infinite domain. Thus, it is

concluded that the boundary element method is a time-
saving, accurate and efficient numerical technique
compared with other numerical techniques.

The boundary element method can be classified into two
categories i.e., direct and indirect. The indirect method
utilizes a distribution of singularities over the boundary
of the body and computes this distribution as the
solution of integral equation. The equation of indirect
method can be derived from that of direct method.
(Lamb, 1932; Milne-Thomson, 1968; Ramsey, 1942,
Kellogg, 1929; Brebbia and Walker, 1980). The indirect
method has been used in the past for flow field
calculations around arbitrary bodies (Hess and Smith,
1967; Muhammad, 2008; Luminita, 2008; Mushtaq et af,
2008, 2009; Mushtag and Shah, 2010a,b; Mushtaq,
2011; Mushtaq and Shah, 2012). Most of the work on
fluid flow calculations using boundary element methods
has been done in the field of incompressible flow. Very
few attempts have been made on flow field calculations
using bhoundary element methods in the field of
compressible flow. In this paper, the indirect boundary
element method has been used for the solution of
inviscid compressible flows around a Joukowski aerofoil
with linear element approach using doublet distribution
alone.

MATERIALS AND METHODS

Mathematical formulation: We know that equation of
motion for two-dimensional, steady, irrotational and
isentropic flow (Mushtagq and Shah, 2010a,b, Mushtaq,
2011; Mushtaq and Shah, 2012) is:
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Fig. 1: Flow past a Joukowski aerofoil
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where, Ma is the Mach number and ® is the total velocity
potential of the flow.
Using the dimension less variables, x = X, y = B Y, where

B = - Ma® Eq. (1) becomes:

TP =0 @)

which is Laplace’s equation.

Flow past a joukowskKi aerofoil: Consider the flow past
a Joukowski aerofoil and let the onset flow be the
uniform stream with velocity U in the positive direction of
the x-axis as shown in Fig. (1).

Exact velocity: The magnitude of the exact velocity
distribution over the boundary of a Joukowski aerofoil is
given by Chow (1979) and Mushtaq (2011, 2012) is:

Where:

r = Radius of the cylinder,

a = Joukowskitransformation constant
z =  xty,Zi=btlg,

b=a-yr -¢
In Cartesian coocrdinates the exact velocity becomes:
[[{x-b)* +(y-c¥ ¥ -r* {x-b)y (y-c)}+
26(y-cH(x-b)’ +{y=c)" ' +[2c(x-b){(x-b)" +
v = U W reciy-ol]
(x=b) (v -o) |
J[(XZ i y2)2 _g? (XZ _yQ)T +4aty?

2,.2

y

3

(X -y —a*) +4x

—
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Boundary conditions: Now the condition to be satisfied
on the boundary of a Joukowski aerofoil is:
[=ZIN
V.n=0 (4)
where fi is the unit normal vector to the boundary of the
aerofoil. Since the motion is irrotational:

®
V= -Vd

where, @ is the total velocity potential. Thus Eq. (4)
becomes:

(-7 ®).A=0

od

o (5)
an

=0

Now the total velocity potential ® is the sum of the
perturbation velocity potential dy » where the subscript j.a
stands for Joukowski aerofcil and the velocity potential
of the uniform stream o¢u.s.

ie.
® = dustdia (®)
or:
b _ 99, 09, )
an an an
From Eq. (5) and (7), we get:
N W,
an  dn
or:
9. 99, (®)
an an

But the velocity potential of the uniform stream, given in
Milne-Thomson (1968), Shah (2008), is:

Pus =-Ux (9)
then:
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Fig. 2: Unit normal to any vector in the plane

aq)u s — Ua_X

an an (10}
- —u(A)

Thus from Eq. (8) and (10), we get:

Ry (1)
an

Now from the Fig. (2):

@ N N
A= (G -+ (YY)

Therefore the unit vector in the direction of the vectorg

is given by: )
(X2 _X1) (YZ y1)j
\/(Xz _Xw) +(¥2 _V1)2

a
A =

The outward unit normal vecter A to the vectorg is given
by:

(¥, 73’1);”()(2 —%)]

\/(Xz ’X1)2 + (yz 3’1)2
Thus:
I"\14I (y227 y1) . (1 2)
J(XE _X1) + (yz _y1)
From Eq. (11) and (12), we get:
a9, ¥, —v2)
o U (13)

\/(X2 - )(1)2 + (Y2 _yw)Z

Equation (13) is the boundary condition which must be
satisfied over the boundary of a Joukowski aerofoil.
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Equation of indirect boundary element method: The
equation of indirect houndary element method for two-
dimensional flow in the case of doublet alone
(Muhammad, 2008 and Mushtaq, 2008, 2009, 2010,
2011 and 2012) is:

Y +7 jqn J [Iog Jdﬁ% = -(¢,) (4
TE =i
Where:
Ci 0 when | is exterior to [

1 when | isinteriorto [
When | lies on [ and I is smooth

Matrix formulation for linear element approach: Let the
boundary of the region be discretized into m elements,
then Eq. (14) can be written as:

{— o — {Iog Jdl—':|+(Dw
2751-, an

| is the length of the element ‘] excluding the

o+ (15)

=1

~(9,,)

where [-
point ‘1",
For the linear boundary element approach, the number
of nodes will be more than the number of elements.
Suppose that m is the number of nodes in this case.
Since @ varies linearly over the element, its value at any
point can be defined in terms of the nodal values and the
two shape functions N1, N, that is:

& = N&, +N,®, = [N, NQ]{(‘?} (16)
2

Where:
N1

1
—(1-8
S(1-9)
and:

1

N, = S(148), ~1<8<t

The integrals along the element ‘j i.e.:

%j_ an(log ]

cah be written as:

1. 0( 1 1 af [ ®

2@ log- [dT = = [ [N, NJ-2 log- Hr

2. an[ogrj 2 d N 2]an[ongd {@2}

P
LAt
(17)
Where:
1 3 1 1

hi = [ @ I dih = — r

" Lgn gl 4 g o ol
or:
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(18)

d 1
ht = k—| log— |dT" k=12
! 2rjj_‘ 8n[ ng

The h"j are influence coefficients during the interaction
between the point ‘I' under consideration and a
particular node k on an element ‘j'.

To write the Eq. {15) corresponding to the node ‘I’ the
contributions from all elements associated with the
node ‘I are to be added into one term, defining the nodal
coefficients. This will give the following Eq.:

—C‘q)‘ + D:'n ﬁ.z

where, Aj term is the sum of the contributions from all
the adjoining elements of the node ‘I'. Hence Eq. (19)
represents the assembled equation for node ‘I’ and can
be written as:

—cd,+ D +0, = —(4,.), (20)
j=1
or:
E‘/Hu-"q)w = _(q)us)‘ (21)
i=1
Where:
Ho_ I:Lj when i=# |
' Fi—c  wheni=j

When all nodes are taken into consideration, Eq. (21) is
M x (M+1) system of equations . Which can put in the
matrix form in case of linear element as:

H {Up =R (22)

where as usual [H] is a matrix of influence coefficients,
{U} is a vector of unknown total potentials ®i and {R} on
the R.H.S. is a known vector whose elements are the
negative of the values of the velocity potential of the
uniform stream at the nodes on the region of the body.
Note that {U} in Eq. (22) has (M+1) unknowns @, @, ...,
Om, ¢-. To solve precisely this system of equations, the
value of ® at some position must be specified. For
convenience ¢- is chosen as zero. Thus M x (M+1)
system reduces to an M x M system of equations which
can be solved as before but now the diagonal
coefficients of [H] will be found by:

H, = 7§1Hu'71

J=1

(23)

Process of discretization: Now for the discretization of
the boundary of the Joukowski aerofoil, the coordinates
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of the extreme points of the boundary elements can be
generated within computer programme using Fortran
language as follows:

Divide the boundary of the circular cylinder into m
elements in the clockwise direction by using the formula:

8, = [(m +2)—2k]%, k=12....m (29

Then the extreme points of these m elements of circular
cylinder are found by:

£ k= -b+r cos Bk
nk=c+rsin Bk

Now by using Joukowski transformation in Eq. (3), the
extreme points of the Joukowski aerofoil are:

a?
aZ
o ﬂk@&i +"1ﬁ}

where, k=1, 2, m.
The coordinates of the middle node of each boundary
element are given by:

X, +% +1
2
Yt +1
2

m

K,m=12...n (23

Yo =

and therefore the boundary condition (13} in this case
takes the form:

o,
dn

), (),
JL0), 0, [, - (), T

RESULTS AND DISCUSSION

The FORTRAN language has been used to compute
data which are given in Tables 1-4. This data has been
applied for various conditions suchas R = 7.5, a = 0.2,
Ma=0.7and c=0.15

The boundary has been divided in to 8 elements given
in Table 1. On the basis of these elements, two relations
have been established (Fig. 3, 4) which shows the
comparison of computed and analytical results over the
boundary of a Joukowski Aerofoil.

With the increase of elements up to 16 given in Table 2,
the relation generated for computed and analytical
velocity has been developed given in Fig. 5-6.

The total increase was taken up to 32 and 64 elements
and the results composed in Fig. 7-10 are indicating the

U

(26)
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Table 1: Computed and analytical velocity distribution comparison over the surface of a Joukowski aerofoil for 8 linear boundary elements

Element X Y R = ,‘x2 Y, Computed velocity Exact velocity
1 -13.70 2.80 13.99 0.71995E+00 0.88787E+00
2 -9.95 6.55 11.91 0.17376E+01 0.20507E+01
3 -4.65 6.55 8.03 0.17355E+01 0.20519E+01
4 -0.83 2.75 2.87 0.71497E+00 0.85796E+00
5 -0.83 -2.55 2.68 0.73896E+00 0.79150E+00
6 -4.65 -6.25 7.79 0.17342E+01 0.18655E+01
7 -9.95 6.25 11.75 0.17372E+01 0.19642E+01
8 -13.70 -2.50 13.93 0.71962E+00 0.80282E+00

Table 2: Computed and analytical velocity distribution comparison over the surface of a Joukowski aerofoil for 16 linear boundary

elements
Element X Y R= m Computed velocity Exact velocity
1 -14.52 1.58 14.60 0.38469E+00 0.44004E+00
2 -13.42 4.24 14.07 0.10954E+01 0.11738E+01
3 -11.39 6.26 13.00 0.16394E+01 0.17365E+01
4 -8.74 7.36 11.42 0.19336E+01 0.20416E+01
5 -5.87 7.36 2.41 0.19333E+01 0.20422E+01
6 321 65.26 7.04 0.16381E+01 0.17372E+01
7 -1.18 4.23 4.39 0.10908E+01 0.11719E+01
8 -0.02 153 1.53 0.38073E+00 0.41176E+00
9 -0.02 -1.33 1.33 0.40688E+00 0.35349E+00
10 -1.18 -3.93 410 0.10897E+01 0.10902E+01
11 321 -5.96 B6.77 0.16379E+01 0.16557E+01
12 -5.87 -7.06 9.18 0.19332E+01 0.19606E+01
13 -8.74 -7.06 11.23 0.19336E+01 0.19600E+01
14 -11.39 -5.96 12.86 0.16394E+01 0.16549E+01
15 -13.42 -3.94 13.98 0.10954E+01 0.10922E+01
16 -14.52 -1.28 14.57 0.38466E+00 0.35887E+00

Table 3: Computed and analytical velocity distribution comparison over the surface of a Joukowski aerofoil for 32 linear boundary

elements
Element X Y R= m Computed velocity Exact velocity
1 -14.73 0.88 14.76 0.19540E+00 0.23719E+00
2 -14.44 232 14.63 0.57869E+00 0.62324E+00
3 -13.88 367 14.36 0.93973E+00 0.98704E+00
4 -13.07 4.88 13.95 0.12646E+01 0.13146E+01
5 -12.04 592 13.41 0.15410E+01 0.15933E+01
6 -10.82 6.73 12.74 0.17580E+01 0.18124E+01
7 -9.47 7.29 11.85 0.19075E+01 0.19636E+01
8 -8.03 7.58 11.04 0.19836E+01 0.20408E+01
9 -8.57 7.57 10.03 0.19834E+01 0.20411E+01
10 -5.13 7.29 8.92 0.19070E+01 0.19643E+01
11 -3.78 6.73 7.72 0.17572E+01 0.18132E+01
12 2.57 591 6.45 0.15396E+01 0.15937E+01
13 -1.53 4.88 5N 0.12627E+01 0.13138E+01
14 -0.72 3.66 373 0.93663E+00 0.98382E+00
15 -0.16 2.30 230 0.57168E+00 0.61492E+00
16 0.19 0.82 0.84 0.19080E+00 0.20753E+00
17 0.19 -0.61 0.64 0.21771E+00 0.15032E+00
18 0.16 -1.99 2.00 0.56986E+00 0.53302E+00
19 -0.72 -3.36 343 0.93621E+00 0.90311E+00
20 -1.53 -4.58 4.83 0.12626E+01 0.12333E+01
21 -2.57 -5.61 6.17 0.15396E+01 0.15133E+01
22 -3.78 -6.43 7.46 0.17572E+01 0.17329E+01
23 513 -6.99 8.67 0.19070E+01 0.18839E+01
24 -8.57 -7.27 9.80 0.19835E+01 0.19607E+01
25 -8.03 -7.28 10.84 0.19836E+01 0.19604E+01
26 -9.47 -6.99 11.77 0.19075E+01 0.18832E+01
27 -10.82 -6.43 12.59 0.17580E+01 0.17321E+01
28 -12.04 -5.62 13.28 0.15410E+01 0.15129E+01
29 -13.07 -4.58 13.85 0.12647E+01 0.12342E+01
30 -13.88 -3.37 14.29 0.93974E+00 0.90667E+00
31 -14.44 -2.02 14.58 0.57869E+00 0.54288E+00
32 -14.73 -0.58 14.74 0.19541E+00 0.15692E+00
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Table 4: Computed and analytical velocity distribution comparison over the surface of a Joukowski aerofoil for 64 linear boundary

elements

Element X Y R=[X +Y Computed velocity Exact velocity
1 -14.78 052 14.79 0.98076E-01 0.13823E+00
2 -14.71 1.25 14.76 0.29328E+00 0.33365E+00
3 -14.57 1.97 14.70 0.48563E+00 0.52625E+00
4 -14.35 267 14.60 0.67333E+00 0.71420E+00
5 -14.07 3.35 14.47 0.85454E+00 0.89567E+00
6 -13.73 4.00 14.30 0.10275E+01 0.10689E+01
7 -13.32 4.61 14.09 0.11906E+01 0.12323E+01
8 -12.85 518 13.86 0.13422E+01 0.13842E+01
9 -12.33 5.70 13.59 0.14809E+01 0.15233E+01
10 -11.76 6.17 13.28 0.16053E+01 0.16480E+01
11 -11.15 6.57 12.95 0.17142E+01 0.17573E+01
12 -10.50 6.92 12.58 0.18066E+01 0.18501E+01
13 -9.82 7.20 1218 0.18817E+01 0.19255E+01
14 -9.12 7.41 11.75 0.19386E+01 0.19828E+01
15 -8.40 7.56 11.30 0.19768E+01 0.20213E+01
16 -7.67 7.63 10.82 0.19959E+01 0.20407E+01
17 -6.93 7.63 10.31 0.19959E+01 0.20408E+01
18 -5.20 7.56 9.78 0.19765E+01 0.20217E+01
19 -5.48 7.41 9.22 0.19382E+01 0.19833E+01
20 -4.78 7.20 8.64 0.18811E+01 0.19263E+01
21 -4.10 6.92 8.04 0.18059E+01 0.18509E+01
22 -3.45 6.57 7.42 0.17133E+01 0.17581E+01
23 -2.84 6.16 6.78 0.16041E+01 0.16485E+01
24 -2.27 5.69 6.13 0.14795E+01 0.15234E+01
25 -1.75 517 5.46 0.13405E+01 0.13838E+01
26 -1.28 4.60 4.78 0.11886E+01 0.12310E+01
27 -0.88 3.99 4.09 0.10250E+01 0.10665E+01
28 -0.53 3.34 3.38 0.85143E+00 0.89163E+00
29 -0.25 2.66 2.67 0.66929E+00 0.70787E+00
30 -0.03 1.95 1.95 0.47998E+00 0.51626E+00
31 0.12 1.21 1.22 0.28385E+00 0.31642E+00
32 0.25 0.45 0.51 0.91189E-01 0.10948E+00
33 0.26 -0.23 0.35 0.11812E+00 0.61689E-01

34 0.12 -0.90 0.91 0.28089E+00 0.23031E+00
35 -0.03 -1.65 1.65 0.47814E+00 0.43415E+00
36 -0.25 -2.36 2.37 0.66849E+00 0.62688E+00
37 -0.53 -3.04 3.00 0.85101E+00 0.81110E+00
38 -0.88 -3.69 3.79 0.10248E+01 0.98617E+00
39 -1.28 -4.30 4.49 0.11884E+01 0.11508E+01
40 -1.75 -4.87 5.18 0.13405E+01 0.13037E+01
41 -2.27 -5.39 5.85 0.14795E+01 0.14433E+01
42 -2.84 -5.86 6.51 0.16041E+01 0.15685E+01
43 -3.45 -6.27 7.16 0.17133E+01 0.16780E+01
44 -4.10 -6.62 7.78 0.18059E+01 0.17709E+01
45 -4.78 -6.90 8.39 0.18812E+01 0.18462E+01
46 -5.48 =711 8.98 0.19382E+01 0.19033E+01
47 -6.20 -7.26 9.55 0.19766E+01 0.19416E+01
48 -5.93 -7.33 10.09 0.19959E+01 0.19607E+01
49 -7.67 -7.33 10.61 0.19960E+01 0.19606E+01
50 -8.40 -7.26 11.10 0.19768E+01 0.19412E+01
51 -9.12 =711 11.57 0.19386E+01 0.19026E+01
52 -9.82 -6.90 12.01 0.18817E+01 0.18454E+01
53 -10.50 -6.62 12.42 0.18067E+01 0.17700E+01
54 -11.15 -6.27 12.80 0.17143E+01 0.16772E+01
55 -11.76 -5.87 13.14 0.16053E+01 0.15679E+01
56 -12.33 -5.40 13.46 0.14809E+01 0.14432E+01
57 -12.85 -4.88 13.75 0.13422E+01 0.13042E+01
58 -13.32 -4.31 14.00 0.11906 E+01 0.11522E+01
59 -13.73 -3.70 14.22 0.10275E+01 0.98885E+00
60 -14.07 -3.05 14.40 0.85453E+00 0.81559E+00
61 -14.35 -2.37 14.55 0.67337E+00 0.63412E+00
62 -14.57 -1.67 14.66 0.48564E+00 0.44618E+00
63 -14.71 -0.95 14.74 0.29328E+00 0.25358E+00
64 -14.78 -0.22 14.78 0.98072E-01 0.58174E-01
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Fig. 6: Computed and analytical velocity distributions
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Fig. 8: Computed and analytical velocity distributions
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comparison over the boundary of a Joukowski
aerofoil using lower 16 values of 32 boundary
elements with indirect linear element approach
forr=75a=02c¢=015and Ma=0.7
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compariscn over the boundary of a Joukowski
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elements with indirect linear element approach
forr=75 a=02c=015and Ma=0.7

25 X Comp.vel

2.0 Exact VW

215
8 2 3%(
()
o / X

0.0 s

0 5 10 15 20
R

Fig. 10: Computed and analytical velocity distributions
comparison over the boundary of a Joukowski
aerofoil using lower 32 values of 64 boundary
elements with indirect linear element approach
forr=75a=02c=015and Ma=0.7

efficiency of boundary element method in computing the
velocity which is reflected by smoothness of the curve.
Boundary element methods are very frequently used for
inviscid fluids to estimate various aspects using linear
approach. These types of solutions are very efficient and
can be directly applied to study surface as well as
ground water bodies which are mostly under threat of
contamination. Hence to solve the contamination
problem, its movements in the major nutrition body are
being studied to control water pollution to save life.
Chow (1979) has proposed analytical methods to solve
the problems related to fluid flow such as flow towards
wells and migration of contaminants in groundwater
movements during pumping out from deep horizons.
These methods are very lengthy and involve complicated
calculations. In this research paper, we are proposing a
new numerical approach to solve the compressible fluid
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flow problems. The comparison made into Chow (1979)
results is very similar and given in Table 1-4 and graphs
310 forr=75 a=02 ¢ =015 and Ma = 0.7. Qur
method is time saving and the degree of accuracy is very
good.

Hence the tables and figures generated for different
conditions show that the results are very well
comparable with the analytically results. Therefore the
indirect boundary element method can be applied to
surface and underground water bodies which are main
nutrition source to solve contamination problems.

Conclusion and recommendations: An indirect
boundary element method has heen applied for the
calculation of inviscid compressible flow past a
Joukowski aercfoil with linear element approach using
doublet distribution alone. The calculated flow velocities
obtained using this method is compared with the
analytical solutions for flow over the boundary of a
Joukowski aerofoil. It is found that from the tables and
graphs, the computed results obtained by this method
are good in agreement with the analytical ones for the
body under consideration and the accuracy of the result
increases due to increase of number of boundary
elements.

Thus the indirect boundary element method is being
suggested to deal the fluid flow problems such as tides,
turbulent or laminar thrust related to the submarines and
other shipping vehicles.
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