The Effect of Coffee Consumption on Blood Glucose: A Review
DOI:
https://doi.org/10.3923/pjn.2020.420.429Keywords:
Caffeine, chlorogenic acid, coffee consumption, diabetes mellitus, glucose tolerance, insulin sensitivityAbstract
This review describes the impact of drinking coffee on glycemic profile parameters (glycemic index [GI], glycemic load [GL], glucose tolerance and insulin sensitivity) and diabetes mellitus. Coffee is very popular in Arab communities including Saudi Arabia. Clinical research has revealed the negative effect of caffeine including a reduction in insulin sensitivity that impairs glucose tolerance. Epidemiological studies also show that drinking coffee has positive effects on both glucose tolerance and sensitivity to insulin, which might assist in reducing the risk of type 2 diabetes especially over long periods of consumption. More studies are thus needed to gain a deeper understanding of how coffee drinking is linked to type 2 diabetes.
References
Mejia, E.G.d. and M.V. Ramirez-Mares, 2014. Impact of caffeine and coffee on our health. Trends Endocrinol., Metabo., 25: 489-492.
Ribeiro, V.S., A.E. Leitão, J.C. Ramalho and F.C. Lidon, 2014. Chemical characterization and antioxidant properties of a new coffee blend with cocoa, coffee silverskin and green coffee minimally processed. Food Res. Int., 61: 39-47.
Pimentel, G.D., T.O. Micheletti, R.C. Fernandes and A. Nehlig, 2019. Coffee Intake and Obesity. In: Nutrition in the Prevention and Treatment of Abdominal Obesity. Watson, R.R. (Ed.). Elsevier, UK, pp: 329-351.
Mitchell, D.C., C.A. Knight, J. Hockenberry, R. Teplansky, T.J. Hartmand, 2014. Beverage caffeine intakes in the U.S. Food and Chem. Toxicol., 63: 136-142.
Ochiai, R., Y. Sugiura, Y. Shioya, K. Otsuka, Y. Katsuragi and T. Hashiguchi, 2014. Coffee polyphenols improve peripheral endothelial function after glucose loading in healthy male adults. Nutr. Res., 34: 155-159.
Pimpley, V., S. Patil, K. Srinivasan, N. Desai and P.S. Murthy, 2020. The chemistry of chlorogenic acid from green coffee and its role in attenuation of obesity and diabetes. Prep. Biochem. Biotechnol.
Lee, L.W., M.W. Cheong, P. Curran, B. Yu and S.Q. Liu, 2015. Coffee fermentation and flavor – An intricate and delicate relationship. Food Chem., 185: 182-191.
Giacalone, D., T.K.Degn, N. Yang, C. Liu, I. Fisk and M. Münchow, 2019. Common roasting defects in coffee: Aroma composition, sensory characterization and consumer perception. Food Qual. Preference, 71: 463-474.
Muñoz, A.E., S.S. Hernández, A.R. Tolosa, S.P. Burillo and M.O. Herrera, 2020. Evaluation of differences in the antioxidant capacity and phenolic compounds of green and roasted coffee and their relationship with sensory properties. Food Sci. Technol., Vol. 128.
Baeza, G., M. Amigo-Benavent, B. Sarriá, L. Goya, R. Mateos and L. Bravo, 2014. Green coffee hydroxycinnamic acids but not caffeine protect human HepG2 cells against oxidative stress. Food Res. Int., 62: 1038-1046.
Wachamo, H.L., Vol. 6, No. 4 2017. Review on Health Benefit and Risk of Coffee Consumption. Med. Aromat. Plants.
Bordenave, N., L.B. Kock, M. Abernathy, J.C. Parcon, A.A. Gulvady, B.J.W.v, Klinken and P. Kasturi 2015. Toward a more standardised and accurate evaluation of glycemic response to foods: Recommendations for portion size calculation. Food Chem., 167: 229-235.
Augustin, L.S., C.W. Kendall, D.J. Jenkins, W.C. Willett and A. Astrup et al., 2015. Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr. Metab. Cardiovasc. Dis., 25: 795-815.
Hardy, D.S., J.T. Garvin and H. Xu, 2020. Carbohydrate quality, glycemic index, glycemic load and cardiometabolic risks in the US, Europe and Asia: A dose–response meta-analysis. Nutr. Metab. Cardiovasc. Dis., 30: 853-871.
Salari-Moghaddam, A., A.H. Keshteli, F. Haghighatdoost, A. Esmaillzadeh and P. Adibi, 2019. Dietary glycemic index and glycemic load in relation to general obesity and central adiposity among adults. Clin. Nutr., 38: 2936-2942.
Schwingshackl, L. and G. Hoffmann, 2013. Long-term effects of low glycemic index/load vs. high glycemic index/load diets on parameters of obesity and obesity-associated risks: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis., 23: 699-706.
Singh, A., P. Raigond, M.K. Lal, B. Singh and N. Thakur, 2020. Effect of cooking methods on glycemic index and in vitro bioaccessibility of potato (Solanum tuberosum L.) carbohydrates. LWT-Food Sci. Technol., Vol. 127.
Mann, J., J.H. Cummings, H.N. Englyst, T. Key and S. Lui et al., 2007. FAO/WHO scientific update on carbohydrates in human nutrition: Conclusions. Eur. J. Clin. Nutr., 61: S132-S137.
Gibson, N., H.C. Schönfeldt and B. Pretorius, 2011. Development of a rapid assessment method for the prediction of the glycemic index. J. Food Compos. Anal., 24: 750-754.
Atkinson, F.S., K. Foster-Powell and J.C. Brand-Miller, 2008. International tables of glycemic index and glycemic load values: 2008. Diabetes Care, 31: 2281-2283.
Al-Mssallem, M.Q., 2014. The association between the glycaemic index of some traditional saudi foods and the prevalence of diabetes in Saudi Arabia: A review article. J. Diabetes Metab., Vol. 5.
Alkaabi, J.M., B. Al-Dabbagh, S. Ahmad, H.F. Saadi, S. Gariballa and M. Al Ghazali, 2011. Glycemic indices of five varieties of dates in healthy and diabetic subjects. Nutr. J., Vol. 10.
Farhat, A.G., S.R. Moukarzel, R.J. El-Said and C.F. Daher, 2010. Glycemic index of commonly consumed lebanese mixed meals and desserts. Asian J. Clin. Nutr., 2: 48-57.
Aston, L.M., J.M. Gambell, D.M. Lee, S.P. Bryant and S.A. Jebb, 2008. Determination of the glycaemic index of various staple carbohydrate-rich foods in the UK diet. Eur. J. Clin. Nutr., 62: 279-285.
AlGeffari, M.A., E.S. Almogbel, T.A. Homaidan, R. El-Mergawi and I.A. Barrimaha, 2016. Glycemic indices, glycemic load and glycemic response for seventeen varieties of dates grown in Saudi Arabia. Ann. Saudi Med., 36: 397-403.
Brouns, F., I. Bjorck, K.N. Frayn, A.L. Gibbs, V. Lang, G. Slama and T.M.S. Wolever, 2005. Glycaemic index methodology. Nutr. Res. Rev., 18: 145-171.
Camps, G., M. Mars, C.d. Graaf and P.A. Smeets, 2016. Empty calories and phantom fullness: a randomized trial studying the relative effects of energy density and viscosity on gastric emptying determined by MRI and satiety. Am. J. Clin. Nutr., 104: 73-80.
Pribic, T., L. Hernandez, A. Nieto, C. Malagelada, A. Accarino and F. Azpiroz, 2018. Effects of meal palatability on postprandial sensations. Neurogastroenterology Motil., Vol. 30, No. 2.
Farvid, M.S., F. Homayouni, M. Shokoohi, A. Fallah and M.S. Farvid, 2014. Glycemic index, glycemic load and their association with glycemic control among patients with type 2 diabetes. Eur. J. Clin. Nutr., 68: 459-463.
Marques, A.M., B.S. Linhares, R.D. Novaes, M.B. Freitas, M.M. Sarandy and R.V. Gonçalves, 2020. Effects of the amount and type of carbohydrates used in type 2 diabetes diets in animal models: A systematic review. PLos ONE, Vol. 15, No. 6.
Fernandez, M.A. and A. Marette, 2020. Dairy Products and Diabetes: Role of Protein on Glycaemic Control. In: Milk and Dairy Foods: Their Functionality in Human Health and Disease. Givens, D.I. (Ed.). Academic Press, United States pp: 173-203.
Korat, A.V.A., Y. Li, F. Sacks, B. Rosner, W.C. Willett, F.B. Hu and Q. Sun, 2019. Dairy fat intake and risk of type 2 diabetes in 3 cohorts of US men and women. Am. J. Clin. Nutr., 110: 1192-1200.
Bataineh, M.F., 2002. Glycemic and Insulinemic Indices of Certain Popular Arabic Sweets with Modified Fat Content. Master Thesis, University of Jordan
Wallace, A.J., Eady, S.L. J.A. Willis, Scott, R.S., J.A. Monro and C.M. Frampton, 2009. Variability in measurements of blood glucose response to foods in human subjects is not reduced after a standard breakfast. Nutr. Res., 29: 238-243.
Wallace, A.J., J.A. Monro, R.C. Brown, C.M. Framptond, 2008. A glucose reference curve is the optimum method to determine the glycemic glucose equivalent values of foods in humans. Nutr. Res., 28: 753-759.
Powers, M.A., R.M. Cuddihy, D. Wesley and B. Morgan, 2010. continuous glucose monitoring reveals different glycemic responses of moderate- vs high-carbohydrate lunch meals in people with type 2 diabetes. J. Am. Diabet. Assoc., 10: 1912-1915.
Cai, X., L. Xia, Y. Pan, D. He, H. Zhu, T. Wei and Y. He, 2019. Differential role of insulin resistance and β-cell function in the development of prediabetes and diabetes in middle-aged and elderly Chinese population. Diabetology Metab. Syndrome, Vol. 11, No. 24.
The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus, 2003. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care, 26: S5-S20.
Chia, C.W., J.M. Egan and L. Ferrucci, 2018. Age-related changes in glucose metabolism, hyperglycemia, and cardiovascular risk. Circ. Res., 123: 886-904.
Jia, T., X. Huang, A.R. Qureshi, H. Xu and J. Ärnlöv et al., 2014. Validation of insulin sensitivity surrogate indices and prediction of clinical outcomes in individuals with and without impaired renal function. Kidney Int., 86: 383-391.
Antuna-Puente, B., E. Disse, R. Rabasa-Lhoret, M. Laville, J. Capeau and J.P. Bastard, 2011. How can we measure insulin sensitivity/resistance? [Comment mesurer la sensibilité/résistance à l’insuline?]. Diabetes Metab., 37: 179-188.
Kim, S.H., A. Silvers, J. Viren and G.M. Reaven, 2016. Relationship between insulin sensitivity and insulin secretion rate: not necessarily hyperbolic. Pathophysiology, 33: 961-967.
Tohidi, M., A. Ghasemi, F. Hadaegh, A. Derakhshan, A. Chary and F. Azizi, 2014. Age- and sex-specific reference values for fasting serum insulin levels and insulin resistance/sensitivity indices in healthy Iranian adults: Tehran lipid and glucose study. Clin. Biochem., 47: 432-438.
Song, S., H.Y. Paik and Y. Song, 2012. High intake of whole grains and beans pattern is inversely associated with insulin resistance in healthy Korean adult population. Diabetes Res. Clin. Pract., 98: E28-E31.
Dam, R.M.v., J.M. Dekker, G. Nijpels, C.D.A. Stehouwer, L.M. Bouter and R.J. Heine, 2004. Coffee consumption and incidence of impaired fasting glucose, impaired glucose tolerance, and type 2 diabetes: the Hoorn study. Diabetologia, 47: 2152-2159.
Whitehead, N. and H. White, 2013. Systematic review of randomised controlled trials of the effects of caffeine or caffeinated drinks on blood glucose concentrations and insulin sensitivity in people with diabetes mellitus. J. Hum. Nutr. Diet., 26: 111-125.
Louie, J.C.Y., F. Atkinson, P. Petocz and J.C.B rand-Miller, 2008. Delayed effects of coffee, tea and sucrose on postprandial glycemia in lean, young, healthy adults. Asia Pac. J. Clin. Nutr., 17: 657-662.
Moisey, L.L., S. Kacker, A.C. Bickerton, L.E. Robinson and T.E. Graham, 2008. Caffeinated coffee consumption impairs blood glucose homeostasis in response to high and low glycemic index meals in healthy men. Am. J. Clin. Nutr., 87: 1254-1261.
Sacramento, J.F., F.O. Martins, T. Rodrigues, P. Matafome, M.J. Ribeiro, E. Olea and S.V. Conde, 2020. A2 adenosine receptors mediate whole-body insulin sensitivity in a prediabetes animal model: primary effects on skeletal muscle. Front. Endocrinol.
Shi, X., W. Xue, S. Liang, J. Zhao and X. Zhang, 2016. Acute caffeine ingestion reduces insulin sensitivity in healthy subjects: a systematic review and meta-analysis. Nutr. J., Vol. 15.
Guarino, M.P., M.J. Ribeiro, J.F. Sacramento and S.V. Conde, 2013. Chronic caffeine intake reverses age-induced insulin resistance in the rat: effect on skeletal muscle Glut4 transporters and AMPK activity. AGE, 35: 1755-1765.
Silva, L.A.d., J. Wouk, V.M.R. Weber, C.d.L. Eltchechem and P.d. Almeida et al., 2017. Mechanisms and biological effects of Caffeine on substrate metabolism homeostasis: A systematic review. J. Applied Pharm. Sci., 7: 215-221.
Robinson, L.E., S. Savani, D.S. Battram, D.H. McLaren, P. Sathasivam and T.E. Graham, 2004. Caffeine ingestion before an oral glucose tolerance test impairs blood glucose management in men with type 2 diabetes. J. Nutr., 134: 2528-2533.
Lee, S.J., R. Hudson, K. Kilpatrick, T.E. Graham and R. Ross, 2005. Caffeine ingestion is associated with reductions in glucose uptake independent of obesity and type 2 diabetes before and after exercise training. J. Diabetes Care, 28: 566-572.
Akash, M.S.H., K. Rehman and S. Chen, 2014. Effects of coffee on type 2 diabetes mellitus. Nutrition, 30: 755-763.
Campbell, B., C. Wilborn, P.L. Bounty, L. Taylor and M.T. Nelson et al, 2013. International society of sports nutrition position stand: energy drinks. J. Int. Soc. Sports Nutr.
Reis, C.E.G., J.G. Dórea and T.H.M.da Costa, 2019. Effects of coffee consumption on glucose metabolism: A systematic review of clinical trials. J. Traditional Complementary Med., 9: 184-191.
Akash, M.S.H., K. Rehman, H. Sun and S. Chen, 2013. Interleukin-1 receptor antagonist improves normoglycemia and insulin sensitivity in diabetic Goto-Kakizaki-rats. Eur. J. Pharmacol., 701: 87-95.
Alagbonsi, A.I., T.M. Salman, H.M. Salahdeen and A.A. Alada, 2016. Effects of adenosine and caffeine on blood glucose levels in rats. Niger. J. Exp. Clin. Biosci., 4: 35-41.
Ohnaka, K., M. Ikeda, T. Maki, T. Okada and T. Shimazoe et al., 2012. Effects of 16-week consumption of caffeinated and decaffeinated instant coffee on glucose metabolism in a randomized controlled trial. J. Nutr. Metab., Vol. 2012.
Ärnlöv, J., B. Vessby and U. Risérus, 2004. Coffee consumption and insulin sensitivity. JAMA, 291: 1199-1201.
Wu, T., W.C. Willett, S.E. Hankinson and E. Giovannucci, 2005. Caffeinated coffee, decaffeinated coffee, and caffeine in relation to plasma C-peptide levels, a marker of insulin secretion, in U.S. women. Diabetes Care, 28: 1390-1396.
Smith, B., D.L. Wingard, T.C. Smith, D. Kritz-Silverstein and E. Barrett-Connor, 2006. Does coffee consumption reduce the risk of type 2 diabetes in individuals with impaired glucose? Diabetes Care, 29: 2385-2390.
Kempf, K., C. Herder, I. Erlund, H. Kolb and S. Martin et al., 2010. Effects of coffee consumption on subclinical inflammation and other risk factors for type 2 diabetes: A clinical trial. Am. J. Clin. Nut., 91: 950-957.
Cherniack, E.P., N. Buslach and H.F. Lee, 2018. The potential effects of caffeinated beverages on insulin sensitivity. J. Am. Coll. Nutr., 37: 161-167.
Williamson, G., 2020. Protection against developing type 2 diabetes by coffee consumption: assessment of the role of chlorogenic acid and metabolites on glycaemic responses. Food and Funct., 11: 4826-4833.
Pham, N.M., A. Nanri, K. Yasuda, K. Kurotani and Keisuke Kuwahara et al., 2015. Habitual consumption of coffee and green tea in relation to serum adipokines: a cross-sectional study. Eur. J. Nutr., 54: 205-214.
Hiltunen, L.A., 2006. Are there associations between coffee consumption and glucose tolerance in elderly subjects? Eur. J. Clin. Nutr., 60: 1222-1225.
Beaudoin, M.S., L.E. Robinson and T.E. Graham, 2011. An oral lipid challenge and acute intake of caffeinated coffee additively decrease glucose tolerance in healthy men. J. Nutr., 141: 574-581.
Feinberg, L.J., H. Sandberg, O.D. Castro and S. Bellet, 1968. Effects of coffee ingestion on oral glucose tolerance curves in normal human subjects. Metabolism, 17: 916-922.
Meng, S., J. Cao, Q. Feng, J. Peng and Y. Hu, 2013. Biological values of acupuncture and chinese herbal medicine: impact on the life science Evidence-Based Complementary Altern. Med., Vol. 2013.
Thom, E., 2007. The effect of chlorogenic acid enriched coffee on glucose absorption in healthy volunteers and its effect on body mass when used long-term in overweight and obese people. J. Int. Med. Res., 35: 900-908.
Gavrieli, A., E. Fragopoulou, C.S. Mantzoros and M. Yannakoulia, 2013. Gender and body mass index modify the effect of increasing amounts of caffeinated coffee on postprandial glucose and insulin concentrations; a randomized, controlled, clinical trial. Metabolism, 62: 1099-1106.
Pham, N.M., A. Nanri, T. Kochi, K. Kuwahara and H. Tsuruoka et al., 2014. Coffee and green tea consumption is associated with insulin resistance in Japanese adults. Metabolism, 63: 400-408.
Battram, D.S., T.E. Graham, E.A. Richter and F. Dela, 2005. The effect of caffeine on glucose kinetics in humans – influence of adrenaline. J. Physiol., 569: 347-355.
Krebs, J.D., A. Parry-Strong, M. Weatherall, R.W. Carroll and M. Downie, 2012. A cross-over study of the acute effects of espresso coffee on glucose tolerance and insulin sensitivity in people with type 2 diabetes mellitus. Metabolism, 61: 1231-1237.
Kahale, K.H., C. Tranchant, S. Pakzad and A.G. Farhat, 2015. Effect of sumac spice, Turkish coffee and yerba mate tea on the postprandial glycemic response to Lebanese mankoucheh. Nutr. Food Sci., 45 : 433 -447.
Beam, J.R., A.L. Gibson, C.M. Kerksick, C.A. Conn, A.C. White and C.M. Mermier, 2015. Effect of post-exercise caffeine and green coffee bean extract consumption on blood glucose and insulin concentrations. Nutrition, 31: 292-297.
Wylie-Rosett, J. and L.M. Delahanty, 2017. The Role of Diet in the Prevention and Treatment of Diabetes. In: Nutrition in the Prevention and Treatment of Disease. Coulston, A.M., C.J. Boushey and L.M. Delahanty (Eds.). Academic Press, United States pp: 691-707.
American Diabetes Association, 2012. Diagnosis and classification of diabetes mellitus. Diabetes Care, 35: S64-S71.
American Diabetes Association, 2012. Standards of Medical Care in Diabetes. Diabetes Care, 35: S11-S63.
Ley, S.H., O. Hamdy, V. Mohan and F.B. Hu, 2014. Prevention and management of type 2 diabetes: Dietary components and nutritional strategies. Lancet, 383: 1999-2007.
Kwok, M.K., G.M. Leung and C.M. Schooling, 2016. Habitual coffee consumption and risk of type 2 diabetes, ischemic heart disease, depression and Alzheimer’s disease: a Mendelian randomization study. Sci. Rep., Vol. 6.
Sarriá, B., S. MartÃnez-López, R. Mateos and L. Bravo-Clemente, 2016. Long-term consumption of a green/roasted coffee blend positively affects glucose metabolism and insulin resistance in humans. Food Res. Int., 89: 1023-1028.
Lane, J.D., 2011. Caffeine, glucose metabolism, and type 2 diabetes. J. Caffeine Res., 1: 23-28.
Ding, M., S.N. Bhupathiraju, M. Chen, R.M. van Dam and F.B. Hu, 2014. Caffeinated and decaffeinated coffee consumption and risk of type 2 diabetes: A systematic review and a dose-response meta-analysis. Diabetes Care, 37: 569-586.
Dam, R.M.V., W.C. Willett, J.E. Manson and F.B. Hu, 2006. Coffee, caffeine, and risk of type 2 diabetes: A prospective cohort study in younger and middle-aged U.S. women. Diabetes Care, 29: 398-403.
Alkaabi, J., B. Al-Dabbagh, H. Saadi, S. Gariballa and J. Yasin, 2013. Effect of traditional arabic coffee consumption on the glycemic index of khalas dates tested in healthy and diabetic subjects. Asia Pac. J. Clin. Nutr., 22: 565-573.
Zhang, Y., E.T. Lee, L.D. Cowan, R.R. Fabsitz and B.V. Howard, 2011. Coffee consumption and the incidence of type 2 diabetes in men and women with normal glucose tolerance: The strong heart study. Nutr. Metab. Cardiovasc. Dis., 21: 418-423.
Hamer, M., D.R. Witte, A. Mosdøl, M.G. Marmot and E.J. Brunner, 2008. Prospective study of coffee and tea consumption in relation to risk of type 2 diabetes mellitus among men and women: The Whitehall II study. Br. J. Nutr., 100: 1046-1053.
Loopstra-Masters, R.C., A.D. Liese, S.M. Haffner, L.E. Wagenknecht and A.J. Hanley, 2011. Associations between the intake of caffeinated and decaffeinated coffee and measures of insulin sensitivity and beta cell function. Diabetologia, 54: 320-328.
Alperet, D.J., S.A. Rebello, E.Y.H. Khoo, Z. Tay and S.S.Y. Seah, 2020. The effect of coffee consumption on insulin sensitivity and other biological risk factors for type 2 diabetes: a randomized placebo-controlled trial. Am. J. Clin. Nutr., 111: 448-458.
Natella, F. and C. Scaccini, 2012. Role of coffee in modulation of diabetes risk. Nutr. Rev., 70: 207-217.
Zaharieva, D.P. and M.C. Riddell, 2013. Caffeine and glucose homeostasis during rest and exercise in diabetes mellitus. Applied Physiol. Nutr. and Metab., 38: 813-822.
Bidel, S., G.Hu, J. Sundvall, J. Kaprio, J. Tuomilehto, 2006. Effects of coffee consumption on glucose tolerance, serum glucose and insulin levels - A cross-sectional analysis. Horm. Metab. Res., 38: 38-43.
Bhatti, K. Salman, O’Keefe, H. James, Lavie and J. Carl, 2013. Coffee and tea: perks for health and longevity? Curr. Opin. Clin. Nutr. Metab. Care, 16: 688-697.
Chu, Y.F., Y. Chen, R.M. Black, P.H. Brown, B.J. Lyle, R.H. Liu and B. Ou, 2011. Type 2 diabetes-related bioactivities of coffee: Assessment of antioxidant activity, NF-κB inhibition, and stimulation of glucose uptake. Food Chem., 124: 914-920.
Asfaw, G. and M. Tefera, 2020. Total polyphenol content of green, roasted and cooked Harar and Yirgacheffee Coffee, Ethiopia. J. Applied Sci. Environ. Manage., 24: 187-192.
Higdon, J.V. and B. Frei, 2006. Coffee and health: A review of recent human research. Crit. Rev. Food Sci. Nutr., 46: 101-123.
Gao, F., Y. Zhang, S. Ge, H. Lu and R. Chen et al., 2018. Coffee consumption is positively related to insulin secretion in the shanghai high-risk diabetic screen (SHiDS) study. Nutr. Metab., Vol. 84.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 The Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.