Mechanism of Anti-Angiogenic and Renal Protective Activity of Balanites aegyptiaca Seeds Extract in Ehrlich Ascites Carcinoma-Bearing Mice
DOI:
https://doi.org/10.3923/pjn.2021.46.54Keywords:
Anticancer, balanites aegyptiaca, ehrlich ascites carcinoma, mice, renal carcinoma cell lineAbstract
Background: One of the animal angiogenesis with high inflammation and rapid growth is Ehrlich ascites carcinoma. Balanites aegyptiaca seeds extract (BASE), a new synthesized compound has antioxidant and antidiabetic activity. The purpose of this study was to evaluate anti-angiogenic activity of BASE in ehrlich ascites carcinoma (EAC)-bearing mice. Materials and Methods: BASE was prepared and characterized using instrumental analysis and spectral data. Furthermore, the IC50 of BASE against the renal carcinoma cell line (RCC-949) was calculated. Adult albino mice weighing 25±5 g was used to assess the anti-angiogenic activity of BASE (100 and 200 mg kg‾1 body weight) in EAC-bearing mice. Results: IC50 of BASE against the renal carcinoma cell line (RCC-949) was equal to 62.18 µg mL‾1. The daily oral administration of BASE at concentrations of 100 and 200 mg kg‾1 body weight for 30 days to EAC-bearing mice resulted in a significant improvement in tumor volume and tumor weight, urea, creatinine, uric acid, TNF-α, NOx, TBARs, GSH, CAT, SOD, GPx and VEGF-C gene expression in EAC-bearing mice. Furthermore, BASE almost normalized these effects in renal histoarchitecture. Conclusion: The BASE has anti-angiogenic activity in EAC-bearing mice.
References
Jaganathan, S.K., D. Mondhe, Z.A. Wani, H.C. Pal and M. Mandal, 2010. Effect of honey and eugenol on Ehrlich ascites and solid carcinoma. J. Biomed. Biotechnol., Vol. 2010.
Giri, B., S. Dey and A. Gomes, 2018. Indian toad (Bufo melanostictus, schneider) skin extract induces apoptosis and shows cytotoxic effect on Ehrlich ascites carcinoma (EAC) cells. J. Drug Delivery Ther., 8: 303-312.
Mishra, S., A.K. Tamta, M. Sarikhani, P.A. Desingu and S.M. Kizkekra et al., 2018. Subcutaneous Ehrlich Ascites Carcinoma mice model for studying cancer-induced cardiomyopathy. Sci. Rep., Vol. 8.
Sciarretta, S., M. Volpe and J. Sadoshima, 2014. Mammalian target of rapamycin signaling in cardiac physiology and disease. Circulation Res., 114: 549-564.
Chiang, J.H., J.S. Yang, C.Y. Ma, M.D. Yang and H.Y. Huang et al., 2011. Danthron, an anthraquinone derivative, induces DNA damage and caspase cascades-mediated apoptosis in SNU-1 human gastric cancer cells through mitochondrial permeability transition pores and bax-triggered pathways. Chem. Res. Toxicol., 24: 20-29.
De Oliveira Fernandes, T., R.I. de Avila, S.S. de Moura, G. de Almeida Ribeiro, M.M.V. Naves and M.C. Valadares, 2015. Campomanesia adamantium (Myrtaceae) fruits protect HEPG2 cells against carbon tetrachloride-induced toxicity. Toxicol. Rep., 2: 184-193.
El-Din, N.K.B., D.A. Ali and R.F. Abou-El-Magd, 2019. Grape seeds and skin induce tumor growth inhibition via G1-phase arrest and apoptosis in mice inoculated with Ehrlich ascites carcinoma. Nutrition, 58: 100-109.
Tan, Z., L. Wu, Y. Fang, P. Chen and R. Wan et al., 2021. Systemic bioinformatic analyses of nuclear-encoded mitochondrial genes in hypertrophic cardiomyopathy. Front. Genet., Vol. 12.
Kaur, M., R.P. Singh, M. Gu, R. Agarwal and C. Agarwal, 2006. Grape seed extract inhibits in vitro and in vivo growth of human colorectal carcinoma cells. Clin. Cancer Res., 12: 6194-6202.
Shynu, M., K.P. Gupta and M. Saini, 2011. Antineoplastic potential of medicinal plants. Recent Pat. Biotechnol., 5: 85-94.
Michielan, A. and R. D’Incà , 2015. Intestinal permeability in inflammatory bowel disease: Pathogenesis, clinical evaluation, and therapy of leaky gut. Mediators Inflammation, Vol. 2015.
Chang, J., R.W. Leong, V.C. Wasinger, M. Ip, M. Yang and T.G. Phan, 2017. Impaired intestinal permeability contributes to ongoing bowel symptoms in patients with inflammatory bowel disease and mucosal healing. Gastroenterology, 153: 723-731.
Fukui, H., 2016. Increased intestinal permeability and decreased barrier function: Does it really influence the risk of inflammation? Inflammatory Intestinal Dis., 1: 135-145.
Fukui, H., 2019. Role of gut dysbiosis in liver diseases: what have we learned so far? Diseases, Vol. 7.
Shao, T., C. Zhao, F. Li, Z. Gu and L. Liu et al., 2018. Intestinal HIF-1α deletion exacerbates alcoholic liver disease by inducing intestinal dysbiosis and barrier dysfunction. J. Hepatol., 69: 886-895.
Fukui, H., 2015. Gut microbiota and host reaction in liver diseases. Microorganisms, 3: 759-791.
Brown, D.I. and K.K. Griendling, 2015. Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circulation Res., 116: 531-549.
Hussein, M.A., A.M. Mohamed, A.O. Mohamed, E.E. Jaafar and M.W. Abdelazem, 2021. Hepatoprotective effect of Balanites aegyptiaca extract against paraquat-induced liver toxicity elements. Acta Sci. Nutr. Health, 5: 110-119.
El-Gizawy, H.A.E., Y.O. Mosaad, N.A. El Khalik Gobba and M.A. Hussein, 2018. Chemical composition of the essential oil of the leaves of Pimenta diocia (L.) Merr. & Pimenta racemosa (Mill.) cultivated in Egypt and evaluation of their in-vitro antioxidant and antidiabetic activities. Int. J. Phytomed., 10: 226-234.
El-Gizawy, H.A. and M.A. Hussein, 2015. Fatty acids profile, nutritional values, anti-diabetic and antioxidant activity of the fixed oil of Malva parviflora growing in Egypt. Int. J. Phytomed., 7: 219-230.
Hussein, M.A., N.S. Abdelghany, D.R. Elsayed, T.M. Mahmoud and R.M. Abdelhay et al., 2021. Balanites aegyptiaca extract inhibits COX-2 and P53 expression in DSS-induced ulcerative colitis. Acta Sci. Nutr. Health, 5: 120-127.
Hussein, M.A., A.K. Kasser, A.T. Mohamed, T.H. Eraqy and A. Asaad, 2020. Resveratrol nanoemulsion: a promising protector against ethinylestradiol-induced hepatic cholestasis in female rats. J. Biomol. Res. Ther., Vol. 9, No. 2.
Hussein, M.A., 2015. Cardioprotective effects of astaxanthin against isoproterenol-induced cardiotoxicity in rats. Nutr. Food Sci., Vol. 5.
Mahmoud, R.A., M.S.N. Eldin, A.A. Ali and M.A. Hussein, 2021. Resveratrol nanoemulsion; a promising regulator of TGFB-1 and TFF-3 genes expression in DSS-induced ulcerative colitis in rats. Acta Sci. Nut. Health, 5: 18-29.
Raju, A. and A.J.M. Christina, 2012. Antitumor potential of Drosera Indica L against Ehrlich Ascites Carcinoma (EAC) Tumor in Mice. Am. J. Pharmtech Res., 2: 955-962.
Kuttan, G., D.M. Vasudevan and R. Kuttan, 1990. Effect of a preparation from Viscum album on tumor development in vitro and in mice. J. Ethnopharmacol., 29: 35-41.
Al-Ghannam, S.M., H.H. Ahmed, N. Zein and F. Zahran, 2013. Antitumor activity of balanitoside extracted from Balanites aegyptiaca fruit. J. Applied Pharm. Sci., 3: 179-191.
Fawcett, J.K. and J.E. Scott, 1960. A rapid and precise method for the determination of urea. J. Clin. Pathol., 13: 156-159.
Hare, R.S., 1950. Endogenous creatinine in serum and urine. Exp. Biol. Med., 74: 148-151.
Fossati, P., L. Prencipe and G. Berti, 1980. Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin. Chem., 26: 227-231.
Niehaus, Jr. W.G. and B. Samuelsson, 1968. Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur. J. Biochem., 6: 126-130.
Miranda, K.M., M.G. Espey and D.A. Wink, 2001. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide, 5: 62-71.
Tsikas, D., 2007. Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: Appraisal of the Griess reaction in the L-arginine/nitric oxide area of research. J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 851: 51-70.
Feng, D., W.H. Ling and R.D. Duan, 2010. Lycopene suppresses LPS-induced NO and IL-6 production by inhibiting the activation of ERK, p38MAPK and NF-κB in macrophages. Inflamm. Res., 59: 115-121.
Rizk, S.H., 2018. Challenges to laboratory hematology practice: Egypt perspective. Int. J. Lab. Hematol., 40: 126-136.
Pinto, A.F., J.V. Rodrigues and M. Teixeira, 2010. Reductive elimination of superoxide: Structure and mechanism of superoxide reductases. Biochim. Biophys. Acta (BBA)-Proteins Proteomics, 1804: 285-297.
Rocha-Santos, C., F.F. Bastos, R.F. Dantas, R.A. Hauser-Davis, L.C. Rodrigues, V.L.F.C. Bastos and J.C. Bastos, 2018. Glutathione peroxidase and glutathione S-transferase in blood and liver from a hypoxia-tolerant fish under oxygen deprivation. Ecotoxicol. Environ. Saf., 163: 604-611.
Hadwan M.H. and S.K. Ali, 2018. New spectrophotometric assay for assessments of catalase activity in biological samples. Anal. Biochem., 542: 29-33.
Downie, T., 1990. Theory and practice of histological techniques edited by J.D. Bancroft & A. Stevens, Churchill Livingstone, Edinburgh, 740 pages, £55.00. Histopathology, 17: 386-386.
Dasari, S. and P.B. Tchounwou, 2014. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 740: 364-378.
Yadav, J.P. and M. Panghal, 2010. Balanites aegyptiaca (L.) Del. (Hingot): A review of its traditional uses, phytochemistry and pharmacological properties. Int. J. Green Pharm., 4: 140-146.
Raju, J. and R. Mehta, 2008. Cancer chemopreventive and therapeutic effects of diosgenin, a food saponin. Nutr. Cancer, 61: 27-35.
Bodduluru, L.N., E.R. Kasala, N. Thota, C.C. Barua and R. Sistla, 2014. Chemopreventive and therapeutic effects of nimbolide in cancer: the underlying mechanisms. Toxicol. Vitro, 28: 1026-1035.
Nagini, S., R. Nivetha, M. Palrasu and R. Mishra, 2021. Nimbolide, a neem limonoid, is a promising candidate for the anticancer drug arsenal. J. Medic. Chem., 64: 3560-3577.
Elumalai, P. and J. Arunakaran, 2014. Review on molecular and chemopreventive potential of nimbolide in cancer. Genomics Inf., 12: 156-164.
Speroni, E., R. Cervellati, G. Innocenti, S. Costa, M.C. Guerra, S. Dall' Acqua and P. Govoni, 2005. Anti-inflammatory, anti-nociceptive and antioxidant activities of Balanites aegyptiaca (L.) Delile. J. Ethnopharmacol., 98: 117-125.
Meda, N.T.R., A. Lamien-Meda, M. Kiendrebeogo, C.E. Lamien, A.Y. Coulibaly, J. Millogo-Rasolodimby and O.G. Nacoulma, 2010. In vitro antioxidant, xanthine oxidase and acetylcholinesterase inhibitory activities of Balanites aegyptiaca (L.) Del. (Balanitaceae). Pak. J. Biol. Sci., 13: 362-368.
Konate, K., A. Souza, A.Y. Coulibaly, N.T.R. Meda and M. Kiendrebeogo et al., 2010. In vitro antioxidant, lipoxygenase and xanthine oxidase inhibitory activities of fractions from Cienfuegosia digitata Cav., Sida alba L. and Sida acuta Burn f. (Malvaceae). Pak. J. Biol. Sci., 13: 1092-1098.
Jing, L., H. Ma, P. Fan, R. Gao and Z. Jia, 2015. Antioxidant potential, total phenolic and total flavonoid contents of Rhododendron anthopogonoides and its protective effect on hypoxia-induced injury in PC12 cells. BMC Compl. Alt. Med., Vol. 15.
Saeed, N., M.R. Khan and M. Shabbir, 2012. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complementary Altern. Med., Vol. 12.
Das, N., M.E. Islam, N. Jahan, M.S. Islam and A. Khan et al., 2014. Antioxidant activities of ethanol extracts and fractions of Crescentia cujete leaves and stem bark and the involvement of phenolic compounds. BMC Complementary Altern. Med., Vol. 14.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 The Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.