Cheese as a Functional Matrix for Probiotics: From Strain Selection to Clinical Benefit
DOI:
https://doi.org/10.3923/pjn.2025.62.73Keywords:
Bifidobacterium, cheese ripening, functional dairy products, gut health, health benefits, lactic acid bacteria, Lactobacillus, microbial viability, sensory quality, Streptococcus thermophilusAbstract
Probiotics are defined as live microorganisms that confer health benefits to the host when consumed in adequate quantities. Since their introduction by Élie Metchnikoff in the early twentieth century, these microorganisms have attracted substantial scientific and commercial interest due to their established roles in supporting gastrointestinal health and improving the functional attributes of foods. Within the dairy sector, cheese has emerged as a particularly advantageous carrier for probiotic delivery owing to its high buffering capacity, compact structure and nutrient-rich composition, all of which contribute to enhanced microbial survival during manufacturing, storage and gastrointestinal transit. This review provides an overview of the historical evolution of the probiotic concept and examines the principal bacterial genera employed in probiotic cheeses, including <i>Lactobacillus</i>, <i>Bifidobacterium</i> and <i>Streptococcus thermophilus</i>. The microbiological traits, metabolic activities and adaptive strategies of these microorganisms are evaluated with respect to their influence on cheese composition, biochemical transformations, flavor development and overall sensory attributes. Furthermore, the review synthesizes evidence on the health-promoting effects associated with probiotic cheese consumption, encompassing antimicrobial properties, immunomodulatory activity, cholesterol-lowering potential, anticancer effects and improved lactose metabolism, alongside relevant safety considerations. In summary, probiotic cheese represents an integration of traditional dairy processing with modern functional food innovation. The incorporation of viable probiotic cultures into cheese not only enhances its nutritional and therapeutic value but also provides an effective and palatable vehicle for delivering beneficial microbes within the human diet.References
Metchnikoff, I.I., 2004. The Prolongation of Life: Optimistic Studies. Springer Publishing Company, New York, NY, USA, ISBN: 0826118771, 9780826118776, Pages:360.
Tissier, H., 1900. Recherches sur la Flore Intestinale des Nourrissons (e′tat Normal et Pathologique). 1st ed., Georges Carré et C. Naud, Paris, France, Pages:253.
Hamilton-Miller, J.M.T., 2003. The role of probiotics in the treatment and prevention of Helicobacter pylori infection. Int. J. Antimicrob. Agents, 22: 360-366.
Lilly, D.M. and R.H. Stillwell, 1965. Probiotics: Growth-promoting factors produced by microorganisms. Science, 147: 747-748.
Parker, R.B., 1974. Probiotics, the other half of the antibiotic story. Anim. Nutr. Health, 29: 4-8.
Afrc, R.F., 1989. Probiotics in man and animals. J. Appl. Bacteriol., 66: 365-378.
FAO and WHO, 2001. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Report of a Joint FAO/WHO Expert Consultation. https://www.iqb.es/digestivo/pdfs/probioticos.pdf
Maftei, N.-M., C.R. Raileanu, A.A. Balta, L. Ambrose, M. Boev and E.L. Lisa et al, 2024. The potential impact of probiotics on human health: An update on their health-promoting properties. Microorganisms, Vol. 12. 10.3390/microorganisms12020234
Tamime, A.Y., 2002. Microbiology of starter cultures. In: Dairy Microbiology Handbook: The Microbiology of Milk and Milk Products, Robinson, R.K., (Ed.). Wiley, New York, USA, pp: 261-366.
Kurmann, J.A. and J.L. Rasic, 1991. The health potential of products containing bifidobacteria. In: Therapeutic of fermented milks, Robinson, R.K, (Ed.). Elsevier Applied Science, London, England, pp: 117-158.
Hammes, W.P. and C. Hertel, 2006. The genera lactobacillus and carnobacterium. In: The Prokaryotes, Dworkin, M., S. Falkow, E. Rosenberg, K.-H. Schleifer and E. Stackebrandt, (Eds.). Springer US, New York, NY, pp: 320-403.
Hammam, A.R.A, 2019. Technological, applications, and characteristics of edible films and coatings: A review. SN Appl. Sci., Vol. 1. 10.1007/s42452-019-0660-8
Stanton, C., G. Fitzgerald, R.P. Ross, C. Desmond, M. Coakley and J.K. Collins, 2003. Challenges facing development of probiotic-containing functional foods. In: Handbook of Fermented Functional Foods, Farnworth, E., (Ed.). CRC Press, Boca Raton, USA, pp: 27-58.
Hammam, A.R.A., A.A. Tammam and A.M.A. El-Rahim, 2018. Effect of different heat treatments on the characteristics of Ras cheese during ripening. Egypt. J. Dairy Sci., 46: 111-119.
Karimi, R., A.M. Mortazavian and A.G.D. Cruz, 2011. Viability of probiotic microorganisms in cheese during production and storage: A review. Dairy Sci. Technol., 91: 283-308.
Brearty, S.M., R. Ross, G. Fitzgerald, J. Collins, J. Wallace and C. Stanton, 2001. Influence of two commercially available bifidobacteria cultures on Cheddar cheese quality. Int. Dairy J., 11: 599-610.
Sousa, M., Y. Ardö and P. McSweeney, 2001. Advances in the study of proteolysis during cheese ripening. Int. Dairy J., 11: 327-345.
Ouwehand, A.C., S. Salminen and E. Isolauri, 2002. Probiotics: An overview of beneficial effects. In: Lactic Acid Bacteria: Genetics, Metabolism and Applications, Siezen, R.J., J. Kok, T. Abee and G. Schasfsma, (Eds.). Springer Netherlands, Dordrecht, pp: 279-289.
Liong, M.T. and N.P. Shah, 2005. Bile salt deconjugation and BSH activity of five bifidobacterial strains and their cholesterol co-precipitating properties. Food Res. Int., 38: 135-142.
Fooks, L.J. and G.R. Gibson, 2002. Probiotics as modulators of the gut flora. Br. J. Nutr., 88: s39-s49.
Senok, A., A. Ismaeel and G. Botta, 2005. Probiotics: Facts and myths. Clin. Microbiol. Infect., 11: 958-966.
Ahola, A., H. Yli-Knuuttila, T. Suomalainen, T. Poussa, A. Ahlström and R. Korpela et al, 2002. Short-term consumption of probiotic-containing cheese and its effect on dental caries risk factors. Arch. Oral Biol., 47: 799-804.
Hatakka, K., A. Ahola, H. Yli-Knuuttila, M. Richardson, T. Poussa and R. Korpela et al, 2007. Probiotics reduce the prevalence of oral Candida in the elderly—a randomized controlled trial. J. Dent. Res., 86: 125-130.
Salminen, S., A. Ouwehand, Y. Benno and Y. Lee, 1999. Probiotics: How should they be defined? Trends Food Sci. Technol., 10: 107-110.
Saarela, M., G. Mogensen, R. Fondén, J. Mättö and T. Mattila-Sandholm, 2000. Probiotic bacteria: Safety, functional and technological properties. J. Biotechnol., 84: 197-215.
Naidu, A.S., W.R. Bidlack and R.A. Clemens, 1999. Probiotic spectra of lactic acid bacteria (LAB). Crit. Rev. Food Sci. Nutr., 39: 13-126.
Boylston, T.D., C.G. Vinderola, H.B. Ghoddusi and J.A. Reinheimer, 2004. Incorporation of bifidobacteria into cheeses: Challenges and rewards. Int. Dairy J., 14: 375-387.
Shimamura, S., F. Abe, N. Ishibashi, H. Miyakawa, T. Yaeshima and M. Tomita et al, 1992. Relationship between oxygen sensitivity and oxygen metabolism of Bifidobacterium species. J. Dairy Sci., 75: 3296-3306.
Ellenton, J.C, 1998. Cellular morphology of bifidobacteria and their survival when encapsulated in calcium alginate beads. Master's Thesis. University of Guelph.
Lourens-Hattingh, A. and B.C. Viljoen, 2001. Yogurt as probiotic carrier food. Int. Dairy J., 11: 1-17.
Blanchette, L., D. Roy, G. Bélanger and S.F. Gauthier, 1996. Production of cottage cheese using dressing fermented by bifidobaceria. J. Dairy Sci., 79: 8-15.
Dave, R.I. and N.P. Shah, 1998. Ingredient supplementation effects on viability of probiotic bacteria in yogurt. J. Dairy Sci., 81: 2804-2816.
Welman, A., I. Maddox and R. Archer, 2003. Exopolysaccharide and extracellular metabolite production by Lactobacillus delbrueckii subsp. bulgaricus, grown on lactose in continuous culture. Biotechnol. Lett., 25: 1515-1520.
Erkuş, O, 2007. Isolation, phenotypic and genotypic characterization of yoghurt starter bacteria. Master's Thesis. Izmir Institute of Technology, Izmir, Turkey.
Gotcheva, V., E. Hristozova, T. Hristozova, M. Guo, Z. Roshkova and A. Angelov, 2002. Assessment of potential probiotic properties of lactic acid bacteria and yeast strains. Food BioTechnol., 16: 211-225.
Sharma, R., B.S. Sanodiya, D. Bagrodia, M. Pandey, A. Sharma and P.S. Bisen, 2012. Efficacy and potential of lactic acid bacteria modulating human health. Int. J. Pharm. Biol. Sci., 3: 935-948.
Buriti, F.C.A., J.S.D. Rocha and S.M.I. Saad, 2005. Incorporation of lactobacillus acidophilus in minas fresh cheese and its implications for textural and sensorial properties during storage. Int. Dairy J., 15: 1279-1288.
Grattepanche, F., S. Miescher-Schwenninger, L. Meile and C. Lacroix, 2008. Recent developments in cheese cultures with protective and probiotic functionalities. Dairy Sci. Technol., 88: 421-444.
Corbo, M., M. Albenzio, M.D. Angelis, A. Sevi and M. Gobbetti, 2001. Microbiological and biochemical properties of canestrato pugliese hard cheese supplemented with bifidobacteria. J. Dairy Sci., 84: 551-561.
Desai, A.R., I.B. Powell and N.P. Shah, 2004. Survival and activity of probiotic lactobacilli in skim milk containing prebiotics. J. Food Sci., Vol. 69. 10.1111/j.1365-2621.2004.tb13371.x
Rychlik, M. and J.O. Bosset, 2001. Flavour and off-flavour compounds of Swiss Gruyère cheese. Identification of key odorants by quantitative instrumental and sensory studies. Int. Dairy J., 11: 903-910.
Vrese, M.D. and J. Schrezenmeir, 2008. Probiotics, prebiotics, and synbiotics. In: Food Biotechnology, Stahl, U., U.E. Donalies and E. Nevoigt, (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, pp: 1-66.
Roy, D, 2005. Technological aspects related to the use of bifidobacteria in dairy products. Le Lait, 85: 39-56.
Hammam, A.R.A. and M.S.I. Ahmed, 2019. Technological and characteristics of low-fat cheeses: A review. Assiut J. Agric. Sci. s, 50: 15-27.
Hammam, A.R.A., M.S. Elfaruk, M.E. Ahmed and V. Sunkesula, 2020. Characteristics and technological aspects of the Egyptian cheeses. Int. J. Curr. Microbiol. Appl. Sci., 9: 3338-3354.
Ahmed, M.E., A.R.A. Hammam, A.E. Ali, K.A. Alsaleem, M.S. Elfaruk and A.H.M. Moneeb et al, 2023. Measurement of carbohydrates and organic acids in varieties of cheese using high‐performance liquid chromatography. Food Sci. Nutr., 11: 2081-2085.
Ross, R.P., G. Fitzgerald, K. Collins and C. Stanton, 2002. Cheese delivering biocultures-probiotic cheese. Aust. J. Dairy Technol., 57: 71-78.
Gardiner, G., C. Stanton, P.B. Lynch, J.K. Collins, G. Fitzgerald and R.P. Ross, 1999. Evaluation of cheddar cheese as a food carrier for delivery of a probiotic strain to the gastrointestinal tract. J. Dairy Sci., 82: 1379-1387.
Sharp, M.D., D.J. McMahon and J.R. Broadbent, 2008. Comparative evaluation of yogurt and low‐fat cheddar cheese as delivery media for probiotic Lactobacillus casei. J. Food Sci., 73: 375-377.
Alsaleem, K.A., K.H. Musa, M.E.A. Hamouda and E.M. Hamad, 2024. Assessing quality attributes and antioxidant effects in chocolate milk formulated with gum Arabic and desert truffle. Processes, Vol. 12. 10.3390/pr12081714
Madureira, A.R., C.I. Pereira, K. Truszkowska, A.M. Gomes, M.E. Pintado and F.X. Malcata, 2005. Survival of probiotic bacteria in a whey cheese vector submitted to environmental conditions prevailing in the gastrointestinal tract. Int. Dairy J., 15: 921-927.
Vinderola, C.G., W. Prosello, D. Ghiberto and J.A. Reinheimer, 2000. Viability of probiotic (Bifidobacterium, Lactobacillus acidophilus and Lactobacillus casei) and nonprobiotic microflora in Argentine fresco cheese. J. Dairy Sci., 83: 1905-1911.
Moneeb, A.H.M., A.R.A. Hammam, A.K.A. Ahmed, M.E. Ahmed and K.A. Alsaleem, 2021. Effect of fat extraction methods on the fatty acids composition of bovine milk using gas chromatography. Food Sci. Nutr., 9: 2936-2942.
Ahmed, M.E., K. Rathnakumar, N. Awasti, M.S. Elfaruk and A.R.A. Hammam, 2021. Influence of probiotic adjunct cultures on the characteristics of low‐fat feta cheese. Food Sci. Nutr., 9: 1512-1520.
Hamdy, A.M., M.E. Ahmed, D. Mehta, M.S. Elfaruk, A.R.A. Hammam and Y.M.A. El‐Derwy, 2020. Enhancement of low‐fat feta cheese characteristics using probiotic bacteria. Food Sci. Nutr., 9: 62-70.
Hamouda, M.E.A. and P. Salunke, 2024. Changes in milk protein functionality at low temperatures and rennet concentrations. Foods, Vol. 13. 10.3390/foods13030447
Moneeb, A., A. Ali, M. Ahmed and Y. Elderwy, 2022. Characteristics of low-fat white soft cheese made with different ratios of Bifidobacterium bifidum. Assiut J. Agric. Sci. s, 53: 31-44.
Alsaleem, K.A. and M.E.A. Hamouda, 2024. Enhancing low-fat probiotic yogurt: The role of xanthan gum in functionality and microbiological quality. Processes, Vol. 12. 10.3390/pr12050990
Elderwy, Y., R. Kalita, M.E.A. Hamouda, P. Chaudhary, M.S. Elfaruk and O.A.A. Abdelsater et al, 2025. Influence of guar gum and xanthan gum on the rheological behavior, texture, and microstructure of probiotic low-fat yogurt. Processes, Vol. 13. 10.3390/pr13103301
Carminati, D., A. Perrone and E. Neviani, 2001. Inhibition of Clostridium sporogenes growth in mascarpone cheese by co-inoculation with streptococcus thermophilus under conditions of temperature abuse. Food Microbiol., 18: 571-579.
Bergamini, C.V., E.R. Hynes, M.C. Candioti and C.A. Zalazar, 2009. Multivariate analysis of proteolysis patterns differentiated the impact of six strains of probiotic bacteria on a semi-hard cheese. J. Dairy Sci., 92: 2455-2467.
El-Zayat, A.A.I. and M.M. Osman, 2001. The use of probiotics in Tallaga cheese. Egypt. J. Dairy Sci., 29: 99-106.
Mirzaei, H., H. Pourjafar and A. Homayouni, 2012. Effect of calcium alginate and resistant starch microencapsulation on the survival rate of Lactobacillus acidophilus La5 and sensory properties in Iranian white brined cheese. Food Chem., 132: 1966-1970.
Mahmoud, R.M., E.I. Yousif, M.G.E. Gadallah and A.R. Alawneh, 2013. Formulations and quality characterization of gluten-free Egyptian balady flat bread. Ann. Agric. Sci., 58: 19-25.
Milesi, M.M., G. Vinderola, N. Sabbag, C.A. Meinardi and E. Hynes, 2009. Influence on cheese proteolysis and sensory characteristics of non-starter lactobacilli strains with probiotic potential. Food Res. Int., 42: 1186-1196.
Casteele, S.V.D., T. Vanheuverzwijn, T. Ruyssen, P.V. Assche, J. Swings and G. Huys, 2006. Evaluation of culture media for selective enumeration of probiotic strains of lactobacilli and bifidobacteria in combination with yoghurt or cheese starters. Int. Dairy J., 16: 1470-1476.
Fernández, M., T. Delgado, S. Boris, A. Rodríguez and C. Barbés, 2005. A washed-curd goat's cheese as a vehicle for delivery of a potential probiotic bacterium: Lactobacillus delbrueckii subsp. lactis UO 004. J. Food Prot., 68: 2665-2671.
Ahmed, M.E., A.M. Hamdy and A.R.A. Hammam, 2020. Therapeutic benefits and applications of whey protein. Int. J. Curr. Microbiol. Appl. Sci., 9: 337-345.
Alsaleem, K., M. Hamouda, R. Alayouni, M. Elfaruk and A. Hammam, 2023. Effect of skim milk powder and whey protein concentrate addition on the manufacture of probiotic mozzarella cheese. Fermentation, Vol. 9. 10.3390/fermentation9110948
Ahmed, M.E., A.M. Hamdy, Y.M.A. El-Derway, F.E. El-Gazzar and I.G.A. El-Naga, 2020. Impact of probiotic bacteria on the chemical characteristics of low-fat soft white cheese. Assiut J. Agric. Sci., 51: 91-104.
Ranadheera, R.D.C.S., S.K. Baines and M.C. Adams, 2010. Importance of food in probiotic efficacy. Food Res. Int., 43: 1-7.
Dinakar, P. and V.V. Mistry, 1994. Growth and viability of Bifidobacterium bifidum in cheddar cheese. J. Dairy Sci., 77: 2854-2864.
Ong, L, 2007. Influence of probiotic organisms on proteolytic pattern, release of bioactive compounds and sensory attributes of cheddar cheese. Ph.D. Thesis. School of Molecular Sciences Faculty of Health Engineering & Science Victoria University, Werribee, Victoria, Australia.
Stanton, C., G. Gardiner, P.B. Lynch, J.K. Collins, G. Fitzgerald and R.P. Ross, 1998. Probiotic cheese. Int. Dairy J., 8: 491-496.
Souza, C.H.B.D., F.C.A. Buriti, J.H. Behrens and S.M.I. Saad, 2008. Sensory evaluation of probiotic minas fresh cheese with Lactobacillus acidophilus added solely or in co‐culture with a thermophilic starter culture. Int. J. Food Sci. Technol., 43: 871-877.
Hammam, A., A. Tammam, Y. Elderwy and A. Hassan, 2017. Functional peptides in milk whey: An overview. Assiut J. Agric. Sci. s, 48: 77-91.
Hammam, A.R.A. and M.S.I. Ahmed, 2019. Technological aspects, health benefits, and sensory properties of probiotic cheese. SN Appl. Sci., Vol. 1. 10.1007/s42452-019-1154-4
Lynch, C.M., D.D. Muir, J.M. Banks, P.L.H. McSweeney and P.F. Fox, 1999. Influence of adjunct cultures of Lactobacillus paracasei ssp. paracasei or Lactobacillus plantarum on cheddar cheese ripening. J. Dairy Sci., 82: 1618-1628.
Gomes, A.A., S.P. Braga, A.G. Cruz, R.S. Cadena, P.C.B. Lollo and H.M.A. Bolini et al, 2011. Effect of the inoculation level of Lactobacillus acidophilus in probiotic cheese on the physicochemical features and sensory performance compared with commercial cheeses. J. Dairy Sci., 94: 4777-4786.
Katsiari, M.C., L.P. Voutsinas and E. Kondyli, 2002. Improvement of sensory quality of low-fat kefalograviera-type cheese with commercial adjunct cultures. Int. Dairy J., 12: 757-764.
Masco, L., M. Ventura, R. Zink, G. Huys and J. Swings, 2004. Polyphasic taxonomic analysis of Bifidobacterium animalis and Bifidobacterium lactis reveals relatedness at the subspecies level: Reclassification of Bifidobacterium animalis as Bifidobacterium animalis subsp. animalis subsp. nov. and Bifidobacterium lactis as Bifidobacterium animalis subsp. lactis subsp. nov. Int. J. Syst. Evol. Microbiol., 54: 1137-1143.
Guldfeldt, L.U., K.I. Sørensen, P. Strøman, H. Behrndt, D. Williams and E. Johansen, 2001. Effect of starter cultures with a genetically modified peptidolytic or lytic system on cheddar cheese ripening. Int. Dairy J., 11: 373-382.
Lynch, C.M., P.L.H. McSweeney, P.F. Fox, T.M. Cogan and F.D. Drinan, 1996. Manufacture of cheddar cheese with and without adjunct lactobacilli under controlled microbiological conditions. Int. Dairy J., 6: 851-867.
Ryhänen, E.-L., A. Pihlanto-Leppälä and E. Pahkala, 2001. A new type of ripened, low-fat cheese with bioactive properties. Int. Dairy J., 11: 441-447.
Gibson, G. and X. Wang, 1994. Regulatory effects of bifidobacteria on the growth of other colonic bacteria. J. Appl. Bacteriol., 77: 412-420.
Yildirim, Z. and M.G. Johnson, 1998. Characterization and antimicrobial spectrum of bifidocin B, a bacteriocin produced by Bifidobacterium bifidum NCFB 1454. J. Food Prot., 61: 47-51.
Vandenplas, Y., G. Huys and G. Daube, 2015. Probiotics: An update. J. Pediatria, 91: 6-21.
Suzuki, I., M. Nomura and T. Morichi, 1991. Isolation of lactic acid bacteria which suppress mold growth and show antifungal action. Milchwissenschaft, 46: 635-639.
Florianowicz, T, 2001. Antifungal activity of some microorganisms against penicillium expansum. Eur. Food Res. Technol., 212: 282-286.
Mandal, V., S.K. Sen and N.C. Mandal, 2007. Detection, isolation and partial characterization of antifungal compound(s) produced by Pediococcus acidilactici LAB 5. Nat. Product Commun., Vol. 2. 10.1177/1934578x0700200610
Sathe, S.J., N.N. Nawani, P.K. Dhakephalkar and B.P. Kapadnis, 2007. Antifungal lactic acid bacteria with potential to prolong shelf-life of fresh vegetables. J. Appl. Microbiol., 103: 2622-2628.
Gerez, C.L., M.I. Torino, G. Rollán and G.F.D. Valdez, 2009. Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food Control, 20: 144-148.
King, C.K., R. Glass, J.S. Bresee and C. Duggan, 2003. Managing acute gastroenteritis among children: Oral rehydration, maintenance, and nutritional therapy. MMWR Recommendations Rep., 52: 1-16.
Niedzielin, K., H. Kordecki and B. Birkenfeld, 2001. A controlled, double-blind, randomized study on the efficacy of Lactobacillus plantarum 299V in patients with irritable bowel syndrome. Eur. J. Gastroenterol. Hepatol., 13: 1143-1147.
Sullivan, Å. and C.E. Nord, 2004. Probiotics and gastrointestinal diseases. J. Internal Med., 257: 78-92.
Reid, G., J. Jass, M.T. Sebulsky and J.K. McCormick, 2003. Potential uses of probiotics in clinical practice. Clin. Microbiol. Rev., 16: 658-672.
Lye, H.-S., C.-Y. Kuan, J.-A. Ewe, W.-Y. Fung and M.-T. Liong, 2009. The improvement of hypertension by probiotics: Effects on cholesterol, diabetes, renin, and phytoestrogens. Int. J. Mol. Sci. s, 10: 3755-3775.
Jones, M.L., C.J. Martoni and S. Prakash, 2013. Oral supplementation with probiotic L. reuteri NCIMB 30242 increases mean circulating 25-hydroxyvitamin D: A post hoc analysis of a randomized controlled trial. J. Clin. Endocrinol. Metab., 98: 2944-2951.
Jones, M.L., C.J. Martoni and S. Prakash, 2012. Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: A randomized controlled trial. Eur. J. Clin. Nutr., 66: 1234-1241.
Soccol, C.R., L.P.D.S. Vandenberghe, M.R. Spier, A.B.P. Medeiros, C.T. Yamaguishi and V. Thomaz-Soccol et al, 2010. The potential of probiotics: A Review. Food Technol. Biotechnol., 48: 413-434.
Commane, D., R. Hughes, C. Shortt and I. Rowland, 2005. The potential mechanisms involved in the anti-carcinogenic action of probiotics. Mutat. Res. /Fundam. Mol. Mech. Mutagen., 591: 276-289.
Falagas, M.E., G.I. Betsi, T. Tokas and S. Athanasiou, 2006. Probiotics for prevention of recurrent urinary tract infections in women. Drugs, 66: 1253-1261.
Farnworth, E.R, 2008. Handbook of fermented functional foods. 2nd ed., CRC Press, Boca Raton, ISBN: 9780429136672, Pages:600.
Allen, S.J., S. Jordan, M. Storey, C.A. Thornton, M. Gravenor and G. Morgan et al, 2010. Dietary supplementation with lactobacilli and bifidobacteria is well tolerated and not associated with adverse events during late pregnancy and early infancy. J. Nutr., 140: 483-488.
Martín‐Muñoz, M.F., M. Fortuni, M. Caminoa, T. Belver, S. Quirce and T. Caballero, 2012. Anaphylactic reaction to probiotics. Cow’s milk and hen’s egg allergens in probiotic compounds. Pediatr. Allergy Immunol., 23: 778-784.
Rautio, M., H. Jousimies‐Somer, H. Kauma, I. Pietarinen, M. Saxelin and M. Koskela et al, 1999. Liver abscess due to a Lactobacillus rhamnosus strain indistinguishable from L. rhamnosus strain GG. Clin. Infect. Dis., 28: 1159-1160.
Mackay, A.D., M.B. Taylor, C.C. Kibbler and J.M.T. Hamilton-Miller, 1999. Lactobacillus endocarditis caused by a probiotic organism. Clin. Microbiol. Infect., 5: 290-292.
Borriello, S.P., W.P. Hammes, W. Holzapfel, P. Marteau, J. Schrezenmeir and V. Valtonen et al, 2003. Safety of probiotics that contain lactobacilli or bifidobacteria. Clin. Infect. Dis., 36: 775-780.
Wohlgemuth, S., G. Loh and M. Blaut, 2010. Recent developments and perspectives in the investigation of probiotic effects. Int. J. Med. MicroBiol., 300: 3-10.
Gomes, A.M.P. and F.X. Malcata, 1999. Bifidobacterium spp. and Lactobacillus acidophilus: Biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends Food Sci. Technol., 10: 139-157.
Agerholm-Larsen, L., A. Raben, N. Haulrik, A. Hansen, M. Manders and A. Astrup, 2000. Effect of 8 week intake of probiotic milk products on risk factors for cardiovascular diseases. Eur. J. Clin. Nutr., 54: 288-297.
Timmerman, H.M., C.J.M. Koning, L. Mulder, F.M. Rombouts and A.C. Beynen, 2004. Monostrain, multistrain and multispecies probiotics—A comparison of functionality and efficacy. Int. J. Food Microbiol., 96: 219-233.
Medici, M., C.G. Vinderola and G. Perdigón, 2004. Gut mucosal immunomodulation by probiotic fresh cheese. Int. Dairy J., 14: 611-618.
Cruz, A.G.D., F.C.A. Buriti, C.H.B.D. Souza, J.A.F. Faria and S.M.I. Saad, 2009. Probiotic cheese: Health benefits, technological and stability aspects. Trends Food Sci. Technol., 20: 344-354.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Abdelfatah K. A. Ahmed, Omar A. A. Abdelsater, Mayada A. A. Abdelal, Mahmoud E. A. Hamouda, Pramith U. Don

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.