Physiological Effects of Agroindustrial Co-Products: Cactus (Opuntia ficus) Pear Peel Flour and Stripe Apple (Malus domestica) Marc Flour on Wistar Rats (Rattus norvegicus)

Authors

  • M. Lourdes Perez-Chabela Department of Biotechnology, Universidad Autonoma Metropolitana Iztapalapa, Av. San Rafael Atlixco 186, Mexico City 09340, Mexico
  • Angelica Cerda-Tapia Department of Biotechnology, Universidad Autonoma Metropolitana Iztapalapa, Av. San Rafael Atlixco 186, Mexico City 09340, Mexico
  • Juan Diaz-Vela Department of Biotechnology, Universidad Autonoma Metropolitana Iztapalapa, Av. San Rafael Atlixco 186, Mexico City 09340, Mexico
  • P. Claudia Delgadillo Department of Animal Nutrition, Instituto Nacional Ciencias Medicas Nutricion Salvador Zubiran,
  • M. Margarita Diaz Department of Animal Nutrition, Instituto Nacional Ciencias Medicas Nutricion Salvador Zubiran, Morocco
  • Gabriela Aleman Department of Nutrition Physiology, Instituto Nacional Ciencias Medicas Nutricion Salvador Zubiran, Mexico City 14000, Mexico

DOI:

https://doi.org/10.3923/pjn.2015.346.352

Keywords:

Apple marc, cactus pear peel, fiber, rats, short chain fatty acids, weight gain

Abstract

Agro-industrial co-products as fruit peel can be used as alternative and cheap fiber and prebiotics resources. The objective of this work was to evaluate rats’ in vivo physiological effect the in vivo effect of apple marc and cactus pear peel during 90 days. Inulin (as control) containing diet resulted in higher average body weight, but apple marc diet showed the same body weight gain. Diets reduced glucose and triglycerides in serum. Lactic acid bacteria and Bifidobacteria count were higher in cactus peel flour diet, although apple marc diet resulted in better fatty acids production. Due to higher insoluble fiber, apple marc flour and cactus pear peel flour resulted in higher non-digestible carbohydrates. Apple marc flour showed similar physiological effects as compared to inulin and can be employed as a good prebiotic source.

References

Anderson, J.W. and W.J. Chen, 1979. Plant fiber. Carbohydrate and lipid metabolism. Am. J. Clin. Nutr., 32: 346-363.

Asad, U., N.J. Emenaker and J.A. Milner, 2008. Colorectal Cancer Prevention. In: Handbook of Prebiotics, Gibson, G.R. and M.B. Roberfroid (Eds.). CRC Press, Boca Raton, FL., pp: 285-294.

Belobrajdic, D.P., C.L.D. Jenkins, R. Bushell, M.K. Morell and A.R. Bird, 2012. Fructan extracts from wheat stem and barley grain stimulate large bowel fermentation in rats. Nutr. Res., 32: 599-606.

Beylot, M., F. Forcheron and D. Letexier, 2008. Triacylglycerols and Cholesterol Metabolism. In: Handbook of Prebiotics, Gibson, G.R. and M.B. Roberfroid (Eds.). CRC Press, Boca Raton, FL., pp: 163-200.

Boeckner, L.S., M.I. Schnepf and B.C. Tungland, 2001. Inulin: A review of nutritional and health implications. Adv. Food Nutr. Rev., 43: 1-63.

Boler, B.M.V. and G.C. Fahley, 2012. Prebiotics of Plant and Microbial Origin. In: Direct-Fed Microbials and Prebiotics for Animals, Callaway, T.R. and S.C. Ricke (Eds.). Springer, New York, USA., pp: 13-26.

Bornet, F.R.J., M.S. Billaux and B. Messing, 1997. Glycaemic index concept and metabolic diseases. Int. J. Biol. Marcomol., 21: 207-219.

Borruel, N., 2007. Probiotics and prebiotics in inflammatory bowel disease. Gastroenterologia Hepatologia, 30: 419-425.

Brown, I., M. Warhurst, J. Arcot, M. Playne, R.J. Illman and D.L. Topping, 1997. Fecal numbers of bifidobacteria are higher in pigs fed Bifidobacterium longum with a high amylose cornstarch than with a low amylose cornstarch. J. Nutr., 127: 1822-1827.

Bugaut, M., 1987. Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comp. Biochem. Physiol. Part B: Comp. Biochem., 86: 439-472.

Campbell, J.M., G.C. Fahey Jr. and B.W. Wolf, 1997. Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats. J. Nutr., 127: 130-136.

Chau, C.F., C.H. Chen and C.Y. Lin, 2004. Insoluble fiber-rich fractions derived from Averrhoa carambola: Hypoglycemic effects determined by in vitro methods. LWT-Food Sci. Technol., 37: 331-335.

Der, G. and B. Everitt, 2002. A Handbook of Statistical Analysis Using SAS. 2nd Edn., Chapman and Hall, USA., ISBN: 1-5848-8245-X, pp: 101-116.

Dongowski, G., G. Jacobasch and D. Schmiedl, 2005. Structural stability and prebiotic properties of resistant starch type 3 increase bile acid turnover and lower secondary bile acid formation. J. Agric. Food Chem., 53: 9257-9267.

DuBois, M., K.A. Gilles, J.K. Hamilton, P.A. Rebers and F. Smith, 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem., 28: 350-356.

Fiordaliso, M.F., N. Kok, J.P. Desager, F. Goethals, D. Deboyser, M. Roberfroid and N. Delzenne, 1995. Dietary oligofructose lowers triglycerides, phospholipids and cholesterol in serum and very low density lipoproteins of rats. Lipids, 30: 163-167.

Franck, A. and D. Bosscher, 2009. Inulin. In: Fiber Ingredients, Cho, S.S. and P. Samuel (Eds.). CRC Press, Boca Raton, FL., pp: 41-60.

Freund, R.J. and R.C. Littell, 2004. SAS® System for Regression. John Wiley and Sons, New York, USA., pp: 31-36.

Friedewald, W.T., R.I. Levy and D.S. Fredrickson, 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem., 18: 499-502.

Gibson, G.R., H.M. Probert, J. van Loo, R.A. Rastall and M.B. Roberfroid, 2004. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev., 17: 259-275.

Gibson, G.R. and M.B. Roberfroid, 1995. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr., 125: 1401-1412.

Grasten, S.M., A.M. Pajari, K.H. Liukkonen, S. Karppinen and H.M. Mykkanen, 2002. Fibers with different solubility characteristics alter similarly the metabolic activity of intestinal microbiota in rats fed cereal brans and inulin. Nutr. Res., 22: 1435-1444.

Griffin, I.J. and S.A. Abrams, 2008. Effects of Prebiotics on Mineral Absorption. In: Handbook of Prebiotics, Gibson, G.R. and M.B. Roberfroid (Eds.). CRC Press, Boca Raton, FL., pp: 93-104.

Hague, A., B. Singh and C. Paraskeva, 1997. Butyrate acts as a survival factor for colonic epithelial cells: Further fuel for the in vivo versus in vitro debate. Gastroenterology, 112: 1036-1040.

Hara, H., Y. Saito, H. Nakashima and S.A. Kiriyama, 1994. Evaluation of fermentability of acid-treated maize husk by rat caecal bacteria in vivo and in vitro. Br. J. Nutr., 71: 719-729.

Jurgonski, A., J. Juskiewicz and Z. Zdunczyk, 2014. A high-fat diet differentially affects the gut metabolism and blood lipids of rats depending on the type of dietary fat and carbohydrate. Nutrients, 6: 616-626.

Larrauri, J.A., I. Goni, N. Martin-Carron, P. Ruperez and F. Saura-Calixtos, 1996. Measurement of health-promoting properties in fruit dietary fibres: Antioxidant capacity, fermentability and glucose retardation index. J. Sci. Food Agric., 71: 515-519.

Li, S., T. Chen, F. Xu, S. Dong, H. Xu, Y. Xiong and H. Wei, 2014. The beneficial effect of exopolysaccharides from Bifidobacterium bifidum WBIN03 on microbial diversity in mouse intestine. J. Sci. Food Agric., 94: 256-264.

Lupton, J.R. and P.P. Kurtz, 1993. Relationship of colonic luminal short-chain fatty acids and pH to in vivo cell proliferation in rats. J. Nutr., 123: 1522-1530.

McIntyre, A., G.P. Young, T. Taranto, P.R. Gibson and P.B. Ward, 1991. Different fibers have different regional effects on luminal contents of rat colon. Gastroenterology, 101: 1274-1281.

Monro, J.A., G. Paturi, C.A. Butts, W. Young and C.E. De Guzman et al., 2012. Prebiotic effects of fermentable carbohydrate polymers may be modulated by faecal bulking of non-fermentable polysaccharides in the large bowel of rats. Int. J. Food Sci. Technol., 47: 968-976.

Nauck, M., G.R. Warnick and N. Rifai, 2002. Methods for measurement of LDL-cholesterol: A critical assessment of direct measurement by homogeneous assays versus calculation. Clin. Chem., 48: 236-254.

Pascoal, G.B., T.M.C.C. Filisetti, E.P. Alvares, F.M. Lajolo and E.W. Menezes, 2013. Impact of onion (Allium cepa L) fructans fermentation on the cecum of rats and the use of in vitro biomarkers to assess in vivo effects. Bioactive Carbohydr. Dietary Fibre, 1: 89-97.

Paturi, G., C.A. Butts, J.A. Monro, D. Hedderley, H. Stoklosinski, N.C. Roy and J. Ansell, 2012. Evaluation of gastrointestinal transit in rats fed dietary fibres differing in their susceptibility to large intestine fermentation. J. Funct. Foods, 4: 107-115.

Philip, G.R, H.N. Forrest and C.F. George Jr., 1993. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet. J. Nutr., 123: 1939-1951.

Remesy, C., S.R. Behr, M.A. Levrat and M.D. Demigne, 1992. Fiber fermentability in the rat cecum and its physiological consequences. Nutr. Res., 12: 1235-1244.

Remesy, C. and C. Demigne, 1976. Partition and absorption of valatile fatty acids in the alimentary canal of the rat. Annales Recherches Veterinaires, 7: 39-55.

Richardson, A.J., A.G. Calder, C.S. Stewart and A. Smith, 1989. Simultaneous determination of volatile and non-volatile acidic fermentation products of anaerobes by capillary gas chromatography. Lett. Applied Microbiol., 9: 5-8.

Ritsema, T. and S. Smeekens, 2003. Fructans: Beneficial for plants and humans. Curr. Opin. Plant Biol., 6: 223-230.

Rodriguez-Cabezas, M.E., D. Camuesco, B. Arribas, N. Garrido-Mesa and M. Comalada et al., 2010. The combination of fructooligosaccharides and resistant starch shows prebiotic additive effects in rats. Clin. Nutr., 29: 832-839.

Sanchez-Muniz, F.J. and S. Bastida, 2008. Do not use the Friedewald formula to calculate LDL-cholesterol in hypercholesterolaemic rats. Eur. J. Lipid Sci. Technol., 110: 295-301.

Shimotoyodome, A., N. Yajima, J. Suzuki and I. Tokimitsu, 2005. Effects of coingestion of different fibers on fecal excretion and cecal fermentation in rats. Nutr. Res., 25: 1085-1096.

Turner, N.D. and J.R. Lupton, 2011. Dietary fiber. Adv. Nutr., 2: 151-152.

Van Soest, P.J., 1978. Dietary fibers: Their definition and nutritional properties. Am. J. Clin. Nutr., 31: S12-S20.

Vigne, J.L., D. Lairon, P. Borel, H. Portugal, A.M. Pauli, J.C. Hauton and H. Lafont, 1987. Effect of pectin, wheat bran and cellulose on serum lipids and lipoproteins in rats fed on a low- or high-fat diet. Br. J. Nutr., 58: 405-413.

Yajima, T., 1985. Contractile effect of short-chain fatty acids on the isolated colon of the rat. J. Physiol., 368: 667-678.

Younes, H., K. Garleb, S. Behr, C. Remesy and C. Deminge, 1994. Fermentable fibers or oligosaccharides reduce urinary nitrogen excretion by increasing urea disposal in the rat cecum. J. Nutr., 125: 1010-1016.

Downloads

Published

15.05.2015

Issue

Section

Research Article

How to Cite

Perez-Chabela, M. L., Cerda-Tapia, A., Diaz-Vela, J., Delgadillo, P. C., Diaz, M. M., & Aleman, G. (2015). Physiological Effects of Agroindustrial Co-Products: Cactus (Opuntia ficus) Pear Peel Flour and Stripe Apple (Malus domestica) Marc Flour on Wistar Rats (Rattus norvegicus). Pakistan Journal of Nutrition, 14(6), 346–352. https://doi.org/10.3923/pjn.2015.346.352