p-Aminobenzoic Acid-chitosan Conjugates for PABA Delivery to the Large Intestine

Authors

  • Sirinporn Nalinbenjapun Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112 Songkhla, Thailand
  • Chitchamai Ovatlarnporn Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112 Songkhla, Thailand

DOI:

https://doi.org/10.3923/pjn.2016.921.928

Keywords:

Biodegradable, chitosan, colon, conjugate, delivery, folic acid, large intestine, PABA, polymer

Abstract

Background: The p-aminobenzoic acid (PABA) is an essential nutrient and important substrate for folic biosynthesis in human. The PABA deficiency can cause many symptoms and diseases which may related to folic acid insufficiency. In this study, chitosans with three different molecular weights (30, 80 and 300 kDa) were selected as a macromolecule carrier for the attachment of PABA for pharmaceutical and nutritional applications. Materials and Methods: The first step, amino groups of chitosan were substituted by p-nitrobenzoyl moiety resulting in p-nitrobenzoyl-chitosans (1a-c). The PABA-chitosan conjugates (2a-c) were finally obtained by sodium dithionite reduction process. They were characterized for their functional groups by FT-IR and PABA loading capacity by HPLC. Results: The products of the first step (1a-c) were obtained in good yields (82.49-90.67%) with high purity. The PABA-chitosan conjugates (2a-c) were achieved from the second step also in high yields (82.26-91.86%) and purity. The FT-IR results of 2a-c displayed the C=O stretching, amide II deformation of N-H group and the C-O stretching at 1632.58-1638.00, 1550.08-1559.93 and 1036.58-1040.09 cm–1, respectively. The HPLC results demonstrated that PABA can be loaded onto chitosan in a range of 11.07-23.02% according to the MW of chitosans. Conclusion: These PABA-chitosan conjugates are suitable to delivery PABA to the large intestine and colon where the biodegradation process of chitosan and the cleavage of the attached PABA occur. The released PABA can be utilized as a substrate for folic acid synthesis and for the treatment of PABA deficiency syndrome.

References

Gientka, I., K. Gut and W. Duszkiewicz-Reinhard, 2009. Role of p-aminobenzoic acid (PABA) in modeling selected properties of bakery yeast. Acta Scient. Polonorum Technol. Alimentaria, 8: 41-51.

Mackie, B.S. and L.E. Mackie, 1999. The PABA story. Australasian J. Dermatol., 40: 51-53.

Chang, T.Y. and M.L. Hu, 1996. Concentrations and lipid peroxidation in tissues and toxicity of para-aminobenzoic acid fed to rats in drinking water. J. Nutr. Biochem., 7: 408-413.

Basset, G.J.C., E.P. Quinlivan, S. Ravanel, F. Rebeille and B.P. Nichols et al., 2004. Folate synthesis in plants: The p-aminobenzoate branch is initiated by a bifunctional PabA-PabB protein that is targeted to plastids. Proc. Natl. Acad. Sci. USA., 101: 1496-1501.

Pompei, A., L. Cordisco, A. Amaretti, S. Zanoni, D. Matteuzzi and M. Rossi, 2007. Folate production by bifidobacteria as a potential probiotic property. Applied Environ. Microbiol., 73: 179-185.

D'Aimmo, M.R., M. Modesto, P. Mattarelli, B. Biavati and T. Andlid, 2014. Biosynthesis and cellular content of folate in bifidobacteria across host species with different diets. Anaerobe, 30: 169-177.

Saini, R.K., S.H. Nile and Y.S. Keum, 2016. Folates: Chemistry, analysis, occurrence, biofortification and bioavailability. Food Res. Int., (In press).

Gisvold, O., J.N. Delgado and W.A. Remers, 1998. Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry. 10th Edn., Lippincott-Raven, USA., ISBN: 9780397515837, Pages: 974.

Weber, F., U. Gloor, J. Wursch and O. Wiss, 1964. Synergism of d- and 1-α-tocopherol during absorption. Biochem. Biophys. Res. Commun., 14: 186-188.

Shive, W., W.W. Ackermann, M. Gordon, M.E. Getzendaner and R.E. Eakin, 1947. 5(4)-amino-4(5)-imidazolecarboxamide, a precursor of purines. J. Am. Chem. Soc., 69: 725-726.

Akberova, S.I., 2002. New biological properties of p-aminobenzoic acid. Biol. Bull. Russ. Acad. Sci., 29: 390-393.

Akberova, S.I., E.B. Tazulakhova, P.I. Musaev-Galbinur, N.A. Leont'eva and O.G. Stroeva, 1999. [Para-aminobenzoic acid-An interferon inducer]. Antibiotiki Khimioterapiia, 44: 17-20, (In Russian).

Akberova, S.I., P.I. Musaev, N.M. Magomedov, K.B. Babaev, K.M. Gakhramanov and O.G. Stroeva, 1998. [Para-aminobenzoic acid as an antioxidant]. Doklady Akademii Nauk, 361: 419-421, (In Russian).

Stroeva, O.G., S.I. Akberova, N.N. Drozd, V.A. Makarov, N.T. Miftakhova and S.S. Kalugin, 1999. [The antithrombotic activity of para-aminobenzoic acid in experimental thrombosis]. Izvestiia Akademii Nauk Seriia Biologicheskaia, 3: 329-336, (In Russian).

Sharon, M., 2009. A User's Guide to Foods, Herbs, Vitamins, Minerals and Supplements. 3rd Edn., Carlton Books, UK.

Birgir, 2015. Potaba peyronie's treatment. http://www.mypeyronies.com/potaba-peyronies-treatment.html.

Yamamoto, A., T. Sakane, M. Shibukawa, M. Hashida and H. Sezaki, 1991. Absorption and metabolic characteristics of p-aminobenzoic acid and its Isomer, m-aminobenzoic acid, from the rat small intestine. J. Pharmaceut. Sci., 80: 1067-1071.

Khandare, J. and T. Minko, 2006. Polymer-drug conjugates: Progress in polymeric prodrugs. Progr. Polym. Sci., 31: 359-397.

Canevari, M., I. Castagliuolo, P. Brun, M. Cardin, M. Schiavon, G. Pasut and F.M. Veronese, 2009. Poly (ethylene glycol)-mesalazine conjugate for colon specific delivery. Int. J. Pharm., 368: 171-177.

Wiwattanapatapee, R., L. Lomlim and K. Saramunee, 2003. Dendrimers conjugates for colonic delivery of 5-aminosalicylic acid. J. Controlled Release, 88: 1-9.

Zou, M., H. Okamoto, G. Cheng, X. Hao, J. Sun, F. Cui and K. Danjo, 2005. Synthesis and properties of polysaccharide prodrugs of 5-aminosalicylic acid as potential colon-specific delivery systems. Eur. J. Pharmaceut. Biopharmaceut., 59: 155-160.

Khan, K.U.R. and C. Ovatlarnporn, 2016. Synthesis and evaluation of p-aminobenzoyl hydroxypropyl cellulose. Pak. J. Nutr., 15: 725-728.

Hejazi, R. and M. Amiji, 2003. Chitosan-based gastrointestinal delivery systems. J. Control Release, 89: 151-165.

Dhananjeyan, M.R., J.A. Trendel, C. Bykowski, J.G. Sarver, H. Ando and P.W. Erhardt, 2008. Rapid and sensitive HPLC assay for simultaneous determination of procaine and para-aminobenzoic acid from human and rat liver tissue extracts. J. Chromatogr. B, 867: 247-252.

Martins, A.O., E.L. da Silva, E. Carasek, N.S. Goncalves, M.C.M. Laranjeira and V.T. de Favere, 2004. Chelating resin from functionalization of chitosan with complexing agent 8-hydroxyquinoline: Application for metal ions on line preconcentration system. Analytica Chimica Acta, 521: 157-162.

Khan, K.U.R., S. Nalinbenjapun, N. Sakorn and C. Ovatlarnporn, 2015. Synthesis, characterization and reduction of p-Nitrobenzoyl hydroxypropyl cellulose. Asian J. Chem., 27: 1875-1878.

Chang, S., B. Condon and J.V. Edwards, 2010. Preparation and characterization of aminobenzyl cellulose by two step synthesis from native cellulose. Fibers Polymers, 11: 1101-1105.

El Hamdaoui, L., M. El Moussaouiti and S. Gmouh, 2016. Homogeneous esterification of cellulose in the mixture N-Butylpyridinium chloride/dimethylsulfoxide. Int. J. Polymer, Volume 2016.

Talaba, P., I. Srokova, P. Hodul and A. Ebringerova, 1996. New procedure for the preparation of cellulose esters with aromatic carboxylic acids. Chem. Pap., 50: 365-368.

Wang, J., Z. Lian, H. Wang, X. Jin and Y. Liu, 2012. Synthesis and antimicrobial activity of Schiff base of chitosan and acylated chitosan. J. Applied Polym. Sci., 123: 3242-3247.

Wang, J. and H. Wang, 2011. Preparation of soluble p-aminobenzoyl chitosan ester by Schiff's base and antibacterial activity of the derivatives. Int. J. Biol. Macromol., 48: 523-529.

Kean, T. and M. Thanou, 2011. Chitin and Chitosan: Sources, Production and Medical Applications. In: Renewable Resources for Functional Polymers and Biomaterials: Polysaccharides, Proteins and Polyesters, Williams, P.A. (Ed.). Chapter 10, The Royal Society of Chemistry, UK., ISBN: 9781849732451, pp: 292-318.

Aiba, S.I., 1992. Studies on chitosan: 4. Lysozymic hydrolysis of partially N-acetylated chitosans. Int. J. Biol. Macromolecules, 14: 225-228.

Halim, A.S., L.C. Keong, I. Zainol and A.H.A. Rashid, 2012. Biocompatibility and Biodegradation of Chitosan and Derivatives. In: Chitosan-Based Systems for Biopharmaceuticals: Delivery, Targeting and Polymer Therapeutics, Sarmento, B. and J. das Neves (Eds.). John Wiley and Sons, UK., ISBN: 9781119964070, pp: 57-73.

Vernazza, C.L., G.R. Gibson and R.A. Rastall, 2005. In vitro fermentation of chitosan derivatives by mixed cultures of human faecal bacteria. Carbohydr. Polym., 60: 539-545.

Kean, T. and M. Thanou, 2010. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Delivery Rev., 62: 3-11.

Downloads

Published

15.09.2016

Issue

Section

Research Article

How to Cite

Nalinbenjapun, S., & Ovatlarnporn, C. (2016). p-Aminobenzoic Acid-chitosan Conjugates for PABA Delivery to the Large Intestine. Pakistan Journal of Nutrition, 15(10), 921–928. https://doi.org/10.3923/pjn.2016.921.928

Most read articles by the same author(s)