Effect of Tea Dregs Form and Different Fermentation Process on the Nutrient, Tannin, Saponin, flavonoid content and Antioxidant Activity
DOI:
https://doi.org/10.3923/pjn.2019.25.33Keywords:
Antioxidant activity, fermentation, poultry feedstuff, tannin and saponin content, tea dregsAbstract
Background and Objective: The production of tea dregs increases every year. Tea dregs contain high levels of nutrients, bioactive compounds that are antioxidants and some antinutrients. The aim of the study was to assess the effect of fermentation on levels of nutrients, tannins, saponin, flavonoids and antioxidant activity of various forms of tea dregs. Materials and Methods: The present study used experimental methods and a completely randomized design. The treatment consisted of fermentation (F) comprising F0: Unfermented, F1: Fermentation using EM-4 and F2: Fermentation using Trichoderma viride. The fermented material was in three forms namely tea dreg-shaped leaf, granules and powders. Each treatment was replicated 4 times. The variables measured were moisture, ash, protein, fat, crude fiber, metabolizable energy, tannins, saponins, flavonoids and antioxidant activity. Results: The fermentation using EM-4 and Trichoderma viride had no significant effect (p>0.05) on the ash content, fat, saponin and flavonoids. However, it had a significant effect (p<0.05) on metabolizable energy, protein content, crude fiber and antioxidant activity. Additionally, it increased significantly (p<0.01) the moisture content but decreased the tannin of tea dregs. Conclusion: Fermentation using EM-4 and Trichoderma viride is effective in improving nutrient quality, flavonoid levels and antioxidant activity of tea dregs. Fermentation caused decrease in antinutrient levels in tea dregs.
References
Mozaffarian, D., E.J. Benjamin, A.S. Go, D.K. Arnett and M.J. Blaha et al., 2016. Heart disease and stroke statistics 2016 update: A report. American Heart Association, USA.
Furman, M.I., S.E. Benoit, M.R. Barnard, C.R. Valeri and M.L. Borbone et al., 1998. Increased platelet reactivity and circulating monocyte-platelet aggregates in patients with stable coronary artery disease. J. Am. College Cardiol., 31: 352-358.
Hu, F.B., E.B. Rimm, M.J. Stampfer, A. Ascherio, D. Spiegelman and W.C. Willett, 2000. Prospective study of major dietary patterns and risk of coronary heart disease in men. Am. J. Clinical Nutr., 72: 912-921.
Rastogi, S., M.M. Pandey and A.K.S. Rawat, 2016. Traditional herbs: A remedy for cardiovascular disorders. Phytomedicine, 23: 1082-1089.
Weisburger, J.H., 2002. Lycopene and tomato products in health promotion. Exp. Biol. Med., 227: 924-927.
Willcox, J.K., G.L. Catignani and C. Lazarus, 2003. Tomatoes and cardiovascular health. Crit. Rev. Food Sci. Nutr., 43: 1-18.
Jeong, D., M. Irfan, E. Saba, S.D. Kim, S.H. Kim and M.H. Rhee, 2016. Water soluble tomato concentrate regulates platelet function via the mitogen-activated protein kinase pathway. Korean J. Vet. Res., 56: 67-74.
Reagan-Shaw, S., M. Nihal and N. Ahmad, 2008. Dose translation from animal to human studies revisited. FASEB J., 22: 659-661.
Park, J.Y., H.D. Ji, B.R. Jeon, E.J. Im and Y.M. Son et al., 2013. Chlorin e6 prevents ADP-induced platelet aggregation by decreasing PI3K-Akt phosphorylation and promoting cAMP production. Evidence-Based Complement. Altern. Med.
Jeon, B.R., S.J. Kim, S.B. Hong, H.J. Park, J.Y. Cho and M.H. Rhee, 2015. The inhibitory mechanism of crude saponin fraction from Korean Red Ginseng in collagen-induced platelet aggregation. J. Ginseng Res., 39: 279-285.
Kim, D.S., M. Irfan, Y.Y. Sung, S.H. Kim and S.H. Park et al., 2017. Schisandra chinensis and Morus alba synergistically inhibit in vivo thrombus formation and platelet aggregation by impairing the glycoprotein VI pathway. Evidence-Based Complement. Altern. Med.
Schaeffer, J. and M.P. Blaustein, 1989. Platelet free calcium concentrations measured with Fura-2 are influenced by the transmembrane sodium gradient. Cell Calcium, 10: 101-113.
Umetsu, T. and K. Sanai, 1978. Effect of 1-Methyl-2-mercapto-5-(3-pyridyl)-imidazole (KC-6141), an anti-aggregating compound, on experimental thrombosis in rats. Thrombosis Haemostasis, 39: 74-83.
Endale, M., W.M. Lee, S.M. Kamruzzaman, S.D. Kim and J.Y. Park et al., 2012. Ginsenosideâ€Rp1 inhibits platelet activation and thrombus formation via impaired glycoprotein VI signalling pathway, tyrosine phosphorylation and MAPK activation. Br. J. Pharmacol., 167: 109-127.
Oh, W.J., M. Endale, S.C. Park, J.Y. Cho and M.H. Rhee, 2012. Dual roles of quercetin in platelets: Phosphoinositide-3-kinase and MAP kinases inhibition and cAMP-dependent vasodilator-stimulated phosphoprotein stimulation. Evidence-Based Complement. Altern. Med.
Trip, M.D., V.M. Cats, F.J. van Capelle and J. Vreeken, 1990. Platelet hyperreactivity and prognosis in survivors of myocardial infarction. N. Engl. J. Med., 322: 1549-1554.
Antithrombotic Trialists Collaboration, 2002. Paper Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction and stroke in high risk patients. Br. Med. J., 324: 71-86.
Pearson, T.A., S.N. Blair, S.R. Daniels, R.H. Eckel and J.M. Fair et al., 2002. AHA guidelines for primary prevention of cardiovascular disease and stroke: 2002 update: Consensus panel guide to comprehensive risk reduction for adult patients without coronary or other atherosclerotic vascular diseases. Circulation, 10: 388-391.
O'kennedy, N., L. Crosbie, M. van Lieshout, J.I. Broom, D.J. Webb and A.K. Duttaroy, 2006. Effects of antiplatelet components of tomato extract on platelet function in vitro and ex vivo: A time-course cannulation study in healthy humans. Am. J. Clin. Nutr., 84: 570-579.
O'kennedy, N., L. Crosbie, S. Whelan, V. Luther and G. Horgan et al., 2006. Effects of tomato extract on platelet function: A double-blinded crossover study in healthy humans. Am. J. Clin. Nutr., 84: 561-569.
Michelson, A.D., 2008. P2Y12 antagonism: Promises and challenges. Arteriosclerosis Thrombosis Vasc. Biol., 28: s33-s38.
Xu, X.L., Y.J. Huang, X.F. Chen, D.Y. Lin and W. Zhang, 2012. 2, 3, 4', 5-Tetrahydroxystilbene-2-O-β-d-glucoside inhibits proliferation of vascular smooth muscle cells: Involvement of NO/cGMP/PKG pathway. Phytother. Res., 26: 1068-1074.
O'Kennedy, N., D. Raederstorff and A.K. Duttaroy, 2017. Fruitflow®: The first European food safety authority-approved natural cardio-protective functional ingredient. Eur. J. Nutr., 56: 461-482.
Li, Z., M.K. Delaney, K.A. O'Brien and X. Du, 2010. Signaling during platelet adhesion and activation. Arteriosclerosis Thrombosis Vasc. Biol., 30: 2341-2349.
Lhermusier, T., S. Severin, J. Van Rothem, C. Garcia and J. Bertrandâ€Michel et al., 2016. ATPâ€binding cassette transporter 1 (ABCA1) deficiency decreases platelet reactivity and reduces thromboxane A2 production independently of hematopoietic ABCA1. J. Thrombosis Haemostasis, 14: 584-595.
Ruggeri, Z.M. and G.L. Mendolicchio, 2007. Adhesion mechanisms in platelet function. Circul. Res., 100: 1673-1685.
Adam, F., A. Kauskot, P. Nurden, E. Sulpice and M.F. Hoylaerts et al., 2010. Platelet JNK1 is involved in secretion and thrombus formation. Blood, 115: 4083-4092.
Toth-Zsamboki, E., C. Oury, H. Cornelissen, R. De Vos, J. Vermylen and M.F. Hoylaerts, 2003. P2X1-mediated ERK2 activation amplifies the collagen-induced platelet secretion by enhancing myosin light chain kinase activation. J. Biol. Chem., 278: 46661-46667.
Roger, S., M. Pawlowski, A. Habib, M. Jandrot-Perrus, J.P. Rosa and M. Bryckaert, 2004. Costimulation of the Giâ€coupled ADP receptor and the Gqâ€coupled TXA2 receptor is required for ERK2 activation in collagenâ€induced platelet aggregation. FEBS Lett., 556: 227-235.
Mazharian, A., S. Roger, P. Maurice, E. Berrou and M.R. Popoff et al., 2005. Differential involvement of ERK2 and p38 in platelet adhesion to collagen. J. Biol. Chem., 280: 26002-26010.
Kuliopulos, A., R. Mohanlal and L. Covic, 2004. Effect of selective inhibition of the p38 MAP kinase pathway on platelet aggregation. Thrombosis Haemostasis, 92: 1387-1393.
Kim, S.D., Y.J. Lee, J.S. Baik, J.Y. Han and C.G. Lee et al., 2014. Baicalein inhibits agonist-and tumor cell-induced platelet aggregation while suppressing pulmonary tumor metastasis via cAMP-mediated VASP phosphorylation along with impaired MAPKs and PI3K-Akt activation. Biochem. Pharmacol., 92: 251-265.
Directorate General of Estate Crops, 2015. Tree crops estate statistic of Indonesia, 2015: Tea. Directorate General of Estate Crops, Jakarta.
Krismansah, H., 2014. The effect of line extension on brand equity in tea beverage products in packaged fruit tea on facebook. Indonesia University of Education, Bandung.
Krisnan, R., 2005. Effect of tea dregs (Camellia sinensis) fermentation with Aspergillus niger in broiler chickens. Indones. J. Anim. Vet. Sci., 10: 1-5.
Dwyer, J.T. and J. Peterson, 2013. Tea and flavonoids: where we are, where to go next. Am. J. Clin. Nutr., 98: 1611S-1618S.
Mahmood, T., N. Akhtar, B.A. Khan, H.M. Khan and T. Saeed, 2010. Outcomes of 3% green tea emulsion on skin sebum production in male volunteers. Bosnian J. Basic Med. Sci., 10: 260-264.
Kartika, N.D., U.H. Tanuwiria and R. Hidayat, 2012. The effect of levels gregs tea flour (Camellia Sinensis) on dried material and organic material digestibility of feed beef cattle (in vitro). J. Unpad, 1: 1-5.
Silverberg, J.I., J. Jagdeo, M. Patel, D. Siegel and N. Brody, 2011. Green tea extract protects human skin fibroblasts from reactive oxygen species induced necrosis. J. Drugs Dermatol., 10: 1096-1101.
Martono, B. and R.T. Setiyono, 2014. Phytochemical screening of six genotypes tea. J. TIDP., 1: 63-68.
Kodama, D.H., A.E.S.S. Goncalves, F.M. Lajolo and M.I. Genovese, 2010. Flavonoids, total phenolics and antioxidant capacity: Comparison between commercial green tea preparations. Food Sci. Technol., 30: 1077-1082.
Winarsi, H., 2007. Natural antioxidants and free radicals: Potential and its application in health. Kanisius, Yogyakarta.
Kaur, C.D. and S. Saraf, 2011. Photochemoprotective activity of alcoholic extract of Camellia sinensis. Int. J. Pharmacol., 7: 400-404.
Sharma, P., M.K. Montes de Oca, A.R. Alkeswani, S.F. McClees, T. Das, C.A. Elmets and F. Afaq, 2018. Tea polyphenols for the prevention of UVB-induced skin cancer. Photodermatol. Photoimmunol. Photomed., 34: 50-59.
Surung, M.Y., 2008. Effect of EM-4 (Effective microorganisms-4) dosage added in drinking water on body weight of local chicken. Agrisistem J., 4: 109-113.
Gunam, I.B.W., W.R. Aryanta and I.B.N.S. Darma, 2011. Production of crude cellulase from Trichoderma viride with concentration of bagasse and fermentation times as treatments. J. Biol., 15: 29-33.
Waghund, R.R., R.M. Shelake and A.N. Sabalpara, 2016. Trichoderma: A significant fungus for agriculture and environment. Afr. J. Agric. Res., 11: 1952-1965.
Pamungkas, W., 2011. Fermentation technology, alternative of solution to improve of utilization of local feedstuff. Media Akuakultur, 6: 43-48.
SPSS., 2013. SPSS Statistics for Windows, Release 22.0. SPSS Inc., Chicago, IL., USA.
Steel, R.G.D., J.H. Torrie and D.A. Zoberer, 1997. Principles and Procedures of Statistics a Biometrical Approach. 3rd Edn., McGraw-Hill, Inc., New York, Pages: 666.
Xing, P., P.E. Mason, S. Chilton, S. Lloyd and J.M. Jones et al., 2016. A comparative assessment of biomass ash preparation methods using X-ray fluorescence and wet chemical analysis. Fuel, 182: 161-165.
Anggrahini, S., 2007. Effect of germinating time on the α-tocopherol and proximate content ofmung bean sprout (Phaseolus radiates L.). Agritech, 27: 152-157.
Setiarto, R.H.B. and N. Widyastuti, 2016. Decreased levels of tannins and phytate acids at sorghum flour fermentation using Rhizopus oligosporus, Lactobacillus plantarum and Saccharomyces cerevisiae. News Biol., 15: 149-157.
Kurniawan, J. and S.B. Widjanarko, 2013. Case studies of proximate analysis, calorie content and food safety aspects of ice beverages around university of Brawijaya. J. Pangan Agroindustri, 1: 56-64.
Llorens, J.M.N., A. Tormo and E. Martinez-Garcia, 2010. Stationary phase in gram-negative bacteria. FEMS Microbiol. Rev., 34: 476-495.
Arulanantham, R., S. Pathmanathan, N. Ravimannan and K. Niranjan, 2012. Alternative culture media for bacterial growth using different formulation of protein sources. J. Nat. Prod. Plant Resour., 2: 697-700.
Rolfe, M.D., C.J. Rice, S. Lucchini, C. Pin and A. Thompson et al., 2012. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J. Bacteriol., 194: 686-701.
Sukrayana, Y., U. Atmomarsono, V.D. Yunianto and E. Supriyatna, 2011. Improvement of crude protein and crude fiber digestibility of fermented product of palm kernel cake and rice bran mixture for broiler. J. Ilmu Teknologi Peternakan, 1: 167-172.
Deepti, B., K. Mina, R.W. Ingle and Y.N. Mohod, 2010. Evaluate the suitability of locally available substrates for mass multiplication of cellulolytic fungi and bacteria. J. Plant Dis. Sci., 5: 27-29.
Ismawadi, 2012. Effect of fermentation times on proximate composition and acceptance of soybean tempe with substitution of maize. Faculty of Health Sciences, University of Muhammadiyah, Surakarta.
Kamara, D.S., S.D. Rachman and S. Gaffar, 2007. Enzymatic degradation of cellulose from banana tree branches to glucose production by cellulolytic activity of Trichoderma viride. Faculty of Math and Science. University of Padjadjaran, Bandung.
Arnata, I.W., 2009. Making bioethanol from cassava using Trichoderma viride, Aspergillus niger and Saccharomyces cerevisiae by bioprocess technology. Master, Thesis, IPB., Bogor.
Aguilar, C.N., R. Rodriguez, G. Gutierrez-Sanchez, C. Augur and E. Favela-Torres et al., 2007. Microbial tannases: Advances and perspectives. Applied Microbiol. Biotechnol., 76: 47-59.
Aguilar-Zarate, P., M.A. Cruz-Hernandez, J.C. Montanez, R.E. Belmares-Cerda and C.N. Aguilar, 2014. Bacterial tannases: Production, properties and applications. Revista Mexicana Ingenieria Quimica, 13: 63-74.
Rodriguez, H., B. de las Rivas, C. Gomez-Cordoves and R. Munoz, 2008. Characterization of tannase activity in cell-free extracts of Lactobacillus plantarum CECT 748T. Int. J. Food Microbiol., 121: 92-98.
Vaquero, I., A. Marcobal and R. Munoz, 2004. Tannase activity by lactic acid bacteria isolated from grape must and wine. Int. J. Food Microbiol., 96: 199-204.
Anwar, Y.A.S. and B. Burhanuddin, 2012. Effect of media composition on activity and character of tannin acyl hydrolase from Aspergillus niger. J. Ilmu Kefarmasian Indonesia, 10: 87-92.
Lynd, L.R., P.J. Weimer, W.H. van Zyl and I.S. Pretorius, 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev., 66: 506-577.
Imsya, A. and R. Palupi, 2008. Effect of starter dose of liquid fermentation on the content of lignin, cellulose and hemicellulose palm fronds. Majalah Ilmiah Sriwijaya, 13: 292-297.
Kumar, P., D.M. Barrett, M.J. Delwiche and P. Stroeve, 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res., 48: 3713-3729.
Shahzadi, T., S. Mehmood, M. Irshad, Z. Anwar and A. Afroz et al., 2014. Advances in lignocellulosic biotechnology: A brief review on lignocellulosic biomass and cellulases. Adv. Biosci. Biotechnol., 5: 246-251.
Suarni and H. Subagio, 2013. Potential of corn and sorghum development as functional food sources. J. Litbang Pert., 32: 47-55.
Suarni, 2009. The prospect of utilizing corn flour for pastry (cookies). J. Litbang Pertan., 28: 63-71.
Wang, Y., T.A. McAllister, L.J. Yanke and P.R. Cheeke, 2000. Effect of steroidal saponin from Yucca schidigera extract on ruminal microbes. J. Applied Microbiol., 88: 887-896.
Sariri, A.K., A.W.M. Murshid and A.I.N. Tari, 2012. Lowering saponin in trembesi (Albizia saman) and utilization as ruminant feed. Reports Competitive Research Grant. Veteran Bangun Nusantara University, Sukoharjo.
Prochazkova, D., I. Bousova and N. Wilhelmova, 2011. Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 82: 513-523.
Sirait, M., 2007. Phytochemical Guide in Pharmacy. Institute of Technology Bandung, Bandung.
Bhanja, T., S. Rout, R. Banerjee and B.C. Bhattacharyya, 2008. Studies on the performance of a new bioreactor for improving antioxidant potential of rice. LWT-Food Sci. Technol., 41: 1459-1465.
Firdiyani, F., T.W. Agustini and W.F. Ma'ruf, 2015. Extraction of bioactive compounds as natural antioxidants from fresh spirulina platensis using different solvents. J. Pengolahan Hasil Perikanan Indones., 18: 28-37.
Redha, A., 2010. Flavonoids: Structure, antioxidative properties and their role in biological systems. J. Belian, 9: 196-200.
Gulcin, I., Z. Huyut, M. Elmastas and H.Y. Aboul-Enein, 2010. Radical scavenging and antioxidant activity of tannic acid. Arabian J. Chem., 3: 43-53.
Jaya, I.G.N.I.P., 2011. Arrests radical DPPH activity test products black tea extract (Camellia sinensis LOK) and gambir (Uncaria gambir (Hunter) Roxb) and profile of TLC Densitometer. Department of Pharmacy, Faculty of Science, University of Udayana, Bali.
Aruben, N.W., 2010. The increase in the concentration of antioxidant phenolic compounds from the bran by fermentation. Faculty of Engineering, University of Diponegoro, Semarang.
Kunaepah, U., 2008. Effect of fermentation times and antibacterial activity against concentration glucose, total polyphenols and quality chemicals kefir milk red beans. Ph.D. Thesis. University of Diponegoro, Semarang.
Molyneux, P., 2004. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol., 26: 211-219.
Downloads
Published
Issue
Section
License
Copyright (c) 2019 The Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.