In vitro Evaluation of Oil Palm Fronds Fermented with Produren: A Durian Probiotic
DOI:
https://doi.org/10.3923/pjn.2019.186.192Keywords:
Beef cattle, oil palm fronds, produren, rumen fluid, rumen pH, ruminal ammonia, VFA concentrationAbstract
Background and Objective: Increasing ruminant productivity requires a protein source not only from feed but also from rumen microbial activity. An increase in the activity of rumen microbes can be accomplished with arumen modifier, which is the role of produren (a durian probiotic). The current study aimed to determine the effect of produren on the in vitro fermentation of oil palm fronds in beef cattle rumen fluid. Methodology: The study used a completely randomized design with 4 treatments and4 replications. The treatments consisted of oil palm fronds without fermentation (NPF/control), oil palm fronds fermented with 2.5% produren (PF1), oil palm fronds fermented with 5% produren (PF2) and oil palm fronds fermented with 7.5% produren (PF3). The parameters measured were dry matter digestibility, organic matter digestibility, N-NH3, pH, the total volatile fatty acid (VFA) concentration and the acetic acid, propionic acid and butyric acid concentrations. The data were analyzed by Duncan’s multiple range test. Results: The oil palm fronds fermented with produren had a higher (p<0.05) dry matter digestibility (8.9%) and concentration of total VFAs, (21.6%) than the control but fermentation with produren did not affect (p>0.05) organic matter digestibility, pH or NH3 in the rumen fluid from beef cattle. Conclusion: Fermentation of oil palm fronds with produren at 7.5 g% DM improved dry matter digestibility and the total VFA concentration in the rumen fluid from beef cattle.
References
Zahari, M.W., O. Abu Hassan, H.K. Wong and J.B. Liang, 2003. Utilization of oil palm frond-based diets for beef and dairy production in Malaysia. Asian-Australasian J. Anim. Sci., 16: 625-634.
Afdal, M., S. Syarif and A. Kasim, 2009. Effect of processing of palm oil petiole on palatability in Bali cows (Bos sondaecus). Proceedings of the British Society of Animal Science Annual Conference on Advances in Animal Biosciences, March 30-April 1, 2009, Southport, UK., pp: 93.
Azmi and Gunawan, 2005. Pemanfaatan pelepah kelapa sawit dan solid untuk pakan sapi potong. Proceeding of Animal Husbandry and Veterinary Technology, September 12-13, 2005, Centre for Animal Reserach and Development, Bogor, pp: 143-146.
Rahman, M.M., M. Lourenco, H.A. Hassim, J.J.P. Baars and A.S.M. Sonnenberg et al., 2011. Improving ruminal degradability of oil palm fronds using white rot fungi. Anim. Feed Sci. Technol., 169: 157-166.
Wina, E., 2005. Teknologi pemanfaatan mikroorganisme dalam pakan untuk meningkatkan produktivitas ternak ruminansia di Indonesia: Sebuah review. Wartazoa, 15: 173-186.
Wallace, R.J., N.R. McEwan, F.M. McInotoch, B. Teferedegne and C.J. Newbold, 2002. Natural products as manipulators of rumen fermentation. Asian-Australasian J. Anim. Sci., 10: 1458-1468.
Hristov, A.N., M. Ivan, L. Neill and T.A. McAllister, 2003. Evaluation of several potential bioactive agents for reducing protozoal activity in vitro. Anim. Feed Sci. Technol., 105: 163-184.
Santoso, B., A. Maunatin, B.T. Hariadi and H. Abubakar, 2013. Isolation and identification of lactid acid bacteria originated from king grass (Pennisetum purpureophoides) as candidate of probiotic for livestock. J. Ilmu Ternak Veteriner, 18: 131-137.
Salminen, S. and A.V. Wright, 2004. Lactic Acid Bacteria: Microbiological and Functional Aspects. 2nd Edn., Marcell Dekker Inc., New York, USA.
Okade, S., 2003. Lactic acid bacteria of plant origin: Characteristic and application. Proceedings of the 2nd Asia Confrence of Lactic Acid Bacteria, November 14-15, 2003, Taipei.
Mardalena, 2016. Fase pertumbuhan isolat Bakteri Asam Laktat (BAL) tempoyak asal jambi yang disimpan pada suhu kamar. J. Sain Peternakan Indonesia, 11: 58-66.
Yuliana, N. and E.I. Dizon, 2011. Phenotypic identification of lactic acid bacteria isolated from Tempoyak (Fermented durian) made in the philippines. Int. J. Biol., 3: 145-152.
Mardalena, S. Syarif, S. Erina 2016. Molecular Characteristics and Identification of Lactic Acid Bacteria of Pineapple Waste as Probiotics Candidates for Ruminants Pak. J. Nutr., 15: 519-523.
Tilley, J.M.A. and R.A. Terry, 1963. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci., 18: 104-111.
SAS., 2007. SAS/STAT User's Guide (Release 9.1.3 Ed.). SAS Institute Incorporation, Cary, North Carolina.
Forsberg, C.W. and K.J., Cheng, 1992. Molecular Strategies to Optimize Forage and Cereal Digestion by Ruminants. In: Biotechnology and Nutrition, Bill, D.D. and S.D. Kung (Eds.). Butterworth Heinmann, Stoneham, UK., pp: 107-147.
Ebrahimi, M., M.A. Rajion, Y.M. Goh, A.S. Farjam, A.Q. Sazili and J.T. Schonewille, 2014. The effects of adding lactic acid bacteria and cellulase in oil palm (Elais guineensis Jacq.) frond silages on fermentation quality, chemical composition and in vitro digestibility. Ital. J. Anim. Sci., 13: 557-562.
Arora, S.P., 1989. Pencernaan Mikroba pada Ruminansia. Gadjah Mada University Press, Yokyakarta.
Wajizah, S., S. Samadi, Y. Usman and E. Mariana, 2015. Evaluasi nilai nutrisi dan kecernaan in vitro pelepah kelapa sawit (Oil palm fronds) yang difermentasi menggunakan Aspergillus niger dengan penambahan sumber karbohidrat yang berbeda. J. Agripet, 15: 13-19.
Asmarasari, S.A. and W.N.H. Zain, 2007. Respons pemberian probiotik dalam pakan terhadap produksi susu sapi perah. Semiloka Nasional Prospek Industri Sapi Perah Menuju Perdagangan Bebas-2020. Puslitbangnak, Bogor, pp: 192-195.
Pazla, R., N. Jamarun, M. Zain and Arief, 2018. Microbial protein synthesis and in vitro fermentability of fermented oil palm fronds by Phanerochaete chrysosporium in combination with tithonia (Tithonia diversifolia) and elephant grass (Pennisetum purpureum). Pak. J. Nutr., 17: 462-470.
Jamarun, N., M. Zain, Arief and R. Pazla, 2018. Populations of rumen microbes and the in vitro digestibility of fermented oil palm fronds in combination with Tithonia (Tithonia diversifolia) and elephant grass (Pennisetum purpureum). Pak. J. Nutr., 17: 39-45.
Van Houtert, M.F.J., 1993. The production and metabolism of volatile fatty acids by ruminants fed roughages: A review. Anim. Feed Sci. Technol., 43: 189-225.
Waldron, M.R., F.N. Schrick, J.D. Quigley, J.L. Klotz, A.M. Saxton and R.N. Heitmann, 2002. Volatile fatty acid metabolism by epithelial cells isolated from different areas of the ewe rumen. J. Anim Sci., 80: 270-278.
Donmez, N., M.A. Karsli, A. Cinar, T. Aksu and E. Baytok, 2003. The effects of different silage additives on rumen protozoan number and volatile fatty acid concentration in sheep fed corn silage. Small Rumin. Res., 48: 227-231.
Widiawati, Y. and A. Thalib, 2012. Comparison fermentation kinetics (in vitro) of grass and shrub legume leaves: The pattern of VFA concentration, estimated CH4 and microbial biomass production. J. Anim. Vet. Sci., 12: 96-104.
Widiyanto, M. Soejono, H. Hartadi and Z. Bachrudin, 2009. Effect of protected kapok seed oil supplementation on in vitro ruminal lipid Anim. Prod., 11: 122-128.
McDonald, P., R.A. Edwards, J.F.D. Greenhalgh and C.A. Morgan, 2002. Animal Nutrition. 5th Edn., Longman Scientific and Technical, New York.
Febrina, D., N. Jamarun, M. Zain and Khasrad, 2016. The effects of P, S and Mg supplementation of oil palm fronds fermented by Phanerochaete chrysosporium on rumen fluid characteristics and microbial protein synthesis. Pak. J. Nutr., 15: 299-304.
Nagaraja, T.G. and E.C. Titgemeyer, 2007. Ruminal acidosis in beef cattle: The current microbiological and nutritional outlook. J. Dairy Sci., 90: E17-E38.
Calsamiglia, S., P.W. Cardozo, A. Ferret and A. Bach, 2008. Changes in rumen microbial fermentation are due to a combined effect of type of diet and pH. J. Anim. Sci., 86: 702-711.
Van Soest, P.J., 1994. Nutritional Ecology the Ruminant. 2nd Edn., Cornel University Press, London, UK., Pages: 476.
Kamra, D.N., 2005. Rumen microbial ecosystem. Curr. Sci., 89: 124-135.
Yuan, Z.Q., S.X. Tang, B. Zeng, M. Wang and Z.L. Tan et al., 2010. Effects of dietary supplementation with alkyl polyglycoside, a nonionic surfactant, on nutrient digestion and ruminal fermentation in goats. J. Anim. Sci., 88: 3984-3991.
Ramos, S., M.L. Tejido, M.E. Martinez, M.J. Ranilla and M.D. Carro, 2009. Microbial protein synthesis, ruminal digestion, microbial populations and nitrogen balance in sheep fed diets varying in forage-to-concentrate ratio and type of forage. J. Anim. Sci., 87: 2924-2934.
Sannes, R.A., M.A. Messman and D.B. Vagnoni, 2002. Form of rumen-degradable carbohydrate and nitrogen on microbial protein synthesis and protein efficiency of dairy cows. J. Dairy Sci., 85: 900-908.
Hristov, A.N. and J.P. Jouany, 2005. Factors Affecting the Efficiency of Nitrogen Utilization in the Rumen. In: Nitrogen and Phosphorus Nutrition of Cattle and Environment, 1st Edn., Hristov, A.N. and E. Pfeffer (Eds.). Wallingford, UK., pp: 117-166.
Orskov, E.R., 1992. Protein Nutrition in Ruminants. 2nd Edn., Academic Press, San Diego, CA., USA.
Downloads
Published
Issue
Section
License
Copyright (c) 2019 The Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.