Physico-Functional and Sensory Properties of Flour and Bread Made from Composite Wheat-Cassava


Authors

  • Camel Lagnika Ecole des Sciences et Techniques de Conservation et de Transformation des Produits Agricoles de Sakété, Université Nationale d’Agriculture, Bénin
  • Paul A.F. Houssou Programme Technologies Agricole et Alimentaire, Centre de Recherches Agricoles d’Agonkanmey, Institut National des Recherches Agricoles du Bénin, Bénin
  • Valere Dansou Programme Technologies Agricole et Alimentaire, Centre de Recherches Agricoles d’Agonkanmey, Institut National des Recherches Agricoles du Bénin, Bénin
  • Abel B. Hotegni Programme Technologies Agricole et Alimentaire, Centre de Recherches Agricoles d’Agonkanmey, Institut National des Recherches Agricoles du Bénin, Bénin
  • Abdou Madjid O. AMOUSSA ORCiD Laboratoire de Biochimie et des Substances Naturelles Bioactives, Unité de Biochimie et de Biologie Moléculaire, Faculté des Sciences et Techniques, Universtité d’Abomey-Calavi, Bénin
  • Flora Y. Kpotouhedo Ecole des Sciences et Techniques de Conservation et de Transformation des Produits Agricoles de Sakété, Université Nationale d’Agriculture, Bénin
  • Sanni A. Doko Ecole des Sciences et Techniques de Conservation et de Transformation des Produits Agricoles de Sakété, Université Nationale d’Agriculture, Bénin
  • Latifou Lagnika Laboratoire de Biochimie et des Substances Naturelles Bioactives, Unité de Biochimie et de Biologie Moléculaire, Faculté des Sciences et Techniques, Universtité d’Abomey-Calavi, Bénin

DOI:

https://doi.org/10.3923/pjn.2019.538.547

Keywords:

Bread, cassava, fortified food, sensory evaluation, wheat flour

Abstract

Background and Objective: Raw material for bread and pastry products, one of the world’s most consumed foods, may become scarce and more expensive in coming decades, because of climate change and urbanization and a steadily growing population. Consumption of bread and other baked aerated wheat flour products has spread in developing countries such as Benin. The objective of the present study was to further characterize the effects of partial replacement of wheat flour by cassava flour on dough and bread properties. Materials and Methods: Wheat flour was replaced with 5-30% cassava flour prepared from solar and oven dried slices of cassava flesh variety (BEN 86 052) and the physical properties of the flour, dough and bread were studied. Results: Physicochemical analysis showed that substitution of wheat flour with 5-30% cassava flour yielded acceptable doughs and bread with a fine and uniform granulometry, close to that of wheat flour (<160 μm). A fiber content, ash content and moisture content were less than 1, 0.7 and 10%, respectively. Also, results demonstrated that no significant difference (p>0.05) was observed in lightness (L* around 88) of wheat flour in comparison to composite flour until 30% of partial replacement. The statistical analysis of the data showed there were no significant differences (p>0.05) for the quality attribute evaluated the 10% cassava flour substituted bread with 100% wheat flour bread. Conclusion: This research shows that cassava flour could be used in composite bread production at 20% level of substitution and beyond this level bread characteristics may be affected. Replacement of wheat flour by cassava flour at 10% in bread making is economically important in Benin as it could save $ 9 586 549 per year. Moreover, this would reduce the expenditure of foreign exchange, post-harvest losses, unemployment and poverty also reduce the celiac disease risk. Therefore, this could increase cassava production and increased income for farmers and local industries.

References

Alisson, E., 2017. Cassava flour can be a partial substitute for wheat flour in bread. Agencia FAPESP, October 18, 2017. http://agencia.fapesp.br/cassava-flour-can-be-a-partial-substitute-for-wheat-flour-in-bread/26423/.

Eggleston, G., P.E. Omoaka and D.O. Ihedioha, 1992. Development and evaluation of products from cassava flour as new alternatives to wheaten breads. J. Sci. Food Agric., 56: 377-385.

Ohimain, E.I., 2014. The prospects and challenges of cassava inclusion in wheat bread policy in Nigeria. Int. J. Sci. Technol. Soc., 2: 6-17.

Seibel, W., 2006. Composite Flours. In: Future of Flour: A Compendium of Flour Improvement, Popper, L., W. Schafer and W. Freund (Eds.). Verlag Agri Media, Hamburg, Germany, ISBN-13: 9783862630424, pp: 193-198.

INSAE., 2018. Statistiques economiques. Institut National de la Statistique et de l'Analyse Economique (INSAE), Cotonou, Benin. https://www.insae-bj.org/statistiques/statistiques-economiques.

Edema, M.O., L.O. Sanni and A.I. Sanni, 2005. Evaluation of maize-soybean flour blends for sour maize bread production in Nigeria. Afr. J. Biotechnol., 4: 911-918.

Nwanekezi, E.C., 2013. Composite flours for baked products and possible challenges-a review. Niger. Food J., 31: 8-17.

Aristizabal, J., J.A. Garcia and B. Ospina, 2017. Refined cassava flour in bread making: A review. Ingenieria Invest., 37: 25-33.

Ayele, H.H., G. Bultosa, T. Abera and T. Astatkie, 2017. Nutritional and sensory quality of wheat bread supplemented with cassava and soybean flours. Cogent Food Agric., Vol. 3, No. 1.

Jensen, S., L.H. Skibsted, U. Kidmose and A.K. Thybo, 2015. Addition of cassava flours in bread-making: Sensory and textural evaluation. LWT-Food Sci. Technol., 60: 292-299.

Noorfarahzilah, M., J.S. Lee, M.S. Sharifudin, A.B.M. Fadzelly and M. Hasmadi, 2014. Applications of composite flour in development of food products. Int. Food Res. J., 21: 2061-2074.

Masamba, K. and H. Jinazali, 2014. Effect of cassava flour processing methods and substitution level on proximate composition, sensory characteristics and overall acceptability of bread made from wheat-cassava flour blends. Afr. J. Food Agric. Nutr. Dev., 14: 2190-2203.

Eddy, N.O., P.G. Udofia and D. Eyo, 2007. Sensory evaluation of wheat/cassava composite bread and effect of label information on acceptance and preference. Afr. J. Biotechnol., 6: 2415-2418.

Tovoli, F., C. Masi, E. Guidetti, G. Negrini, P. Paterini and L. Bolondi, 2015. Clinical and diagnostic aspects of gluten related disorders. World J. Clin. Cases, 3: 275-284.

Penagini, F., D. Dilillo, F. Meneghin, C. Mameli, V. Fabiano and G. Zuccotti, 2013. Gluten-free diet in children: An approach to a nutritionally adequate and balanced diet. Nutrients, 5: 4553-4565.

Di Sabatino, A. and G.R. Corazza, 2009. Coeliac disease. Lancet, 373: 1480-1493.

Food Safety Network, 2014. Cassava nutritional network. University of Guelph, Canada, March 14, 2014, pp: 1-2.

FAO., 2012. Food outlook global market analysis. Global Information and Early Warning System (GIEWS), FAO, Rome, Italy, November 2012, pp: 1-129.

INSAE., 2017. Statistiques economiques. Institut National de la Statistique et de l'Analyse Economique (INSAE), Cotonou, Benin.

Abass, A., A.O. Onabolu and M. Bokanga, 1998. Impact of the high quality cassava flour technology in Nigeria. Proceedings of the 7th Triennial Symposium of the International Society for Tropical Root Crops-African Branch, October 11-17, 1998, Cotonou, Benin.

James, C.S., 1995. Analytical Chemistry of Foods. 1st Edn., Chapman and Hall, New York, ISBN: 978-1-4613-5905-0, Pages: 178.

Niba, L.L., M.M. Bokanga, F.L. Jackson, D.S. Schlimme and B.W. Li, 2002. Physicochemical properties and starch granular characteristics of flour from various Manihot esculenta (Cassava) genotypes. J. Food Sci., 67: 1701-1705.

Crosbie, G.B., 1991. The relationship between starch swelling properties, paste viscosity and boiled noodle quality in wheat flours. J. Cereal Sci., 13: 145-150.

Okezie, B.O. and A.B. Bello, 1988. Physicochemical and functional properties of winged bean flour and isolate compared with soy isolate. J. Food Sci., 53: 450-454.

Vanin, F.M., D. Grenier, C. Doursat, D. Flick, G. Trystram and T. Lucas, 2017. Water loss and crust formation during bread baking, Part II: Technological insights from a sensitivity analysis of a numerical model of baking. Drying Technol., 35: 1518-1529.

Tabtiang, S., S. Prachayawarakon and S. Soponronnarit, 2012. Effects of osmotic treatment and superheated steam puffing temperature on drying characteristics and texture properties of banana slices. Drying Technol., 30: 20-28.

Wang, H., G. Cui, M.R. Luo and H. Xu, 2012. Evaluation of colour-difference formulae for different colour-difference magnitudes. Color Res. Applic., 37: 316-325.

Oladunmoye, O.O., O.C. Aworh, B. Maziya-Dixon, O.L. Erukainure and G.N. Elemo, 2014. Chemical and functional properties of cassava starch, durum wheat semolina flour and their blends. Food Sci. Nutr., 2: 132-138.

Eleazu, C., K. Eleazu, C. Aniedu, J. Amajor, A. Ikpeama and I. Ebenzer, 2014. Effect of partial replacement of wheat flour with high quality cassava flour on the chemical composition, antioxidant activity, sensory quality and microbial quality of bread. Prev. Nutr. Food Sci., 19: 115-123.

Samad, S., H. Rasulu, Hasbullah and S. Hasan, 2018. Chemical properties of High-Quality Cassava Flour (HQCF) from several varieties of cassava. Pak. J. Nutr., 17: 615-621.

Bankole, Y.O., A.O. Tanimola, R.O. Odunukan and D.O. Samuel, 2013. Functional and nutritional characteristics of cassava flour (lafun) fortified with soybeans. J. Educ. Social Res., 3: 163-170.

Agunbiade, S.O., O.J. Ojezele and A.M. Eze, 2017. Maximizing the incorporation of cassava flour as an adjunct in bread baking in Nigeria. Chem. Int., 3: 92-96.

Ajatta, M.A., S.A. Akinola and O.F. Osundahunsi, 2016. Proximate, functional and pasting properties of composite flours made from wheat, breadfruit and cassava starch. Applied Trop. Agric., 21: 158-165.

Lee, M.R., B.G. Swanson and B.K. Baik, 2001. Influence of amylose content on properties of wheat starch and breadmaking quality of starch and gluten blends. Cereal Chem., 78: 701-706.

Morita, N., T. Maeda, M. Miyazaki, M. Yamamori, H. Miura and I. Ohtsuka, 2002. Dough and baking properties of high-amylose and waxy wheat flours. Cereal Chem., 79: 491-495.

Kaur, M. and N. Singh, 2005. Studies on functional, thermal and pasting properties of flours from different chickpea (Cicer arietinum L.) cultivars. Food Chem., 91: 403-411.

Sanni, O.L., A.A. Adebowale, T.A. Filani, O.B. Oyewole and A. Westby, 2006. Quality of flash and rotary dried fufu flour. J. Food Agric. Environ., 4: 74-78.

Lorenz, P.K., 1990. Quinoa (Chenopodium quinoa) starch-physico-chemical properties and functional characteristics. Starch-Starke, 42: 81-86.

Amandikwa, C., M.O. Iwe, A. Uzomah and A.I. Olawuni, 2015. Physico-chemical properties of wheat-yam flour composite bread. Niger. Food J., 33: 12-17.

Achinewhu, S.C., L.I. Barber and I.O. Ijeoma, 1998. Physicochemical properties and garification (gari yield) of selected cassava cultivars in Rivers State, Nigeria. Plant Foods Hum. Nutr., 52: 133-140.

Kulkarni, K.D., N. Govinden and D. Kulkarni, 1996. Production and use of raw potato flour in Mauritian traditional foods. Food Nutr. Bull., 17: 1-8.

Plaami, S., 1997. Myoinositol phosphates: Analysis, content in foods and effects in nutrition. LWT-Food Sci. Technol., 30: 633-647.

Oladunmoye, O.O., R. Akinoso and A.A. Olapade, 2010. Evaluation of some physical-chemical properties of wheat, cassava, maize and cowpea flours for bread making. J. Food Qual., 33: 693-708.

Aluge, O.O., S.A. Akinola and O.F. Osundahunsi, 2016. Effect of malted sorghum on quality characteristics of wheat-sorghum-soybean flour for potential use in confectionaries. Food Nutr. Sci., 7: 1241-1252.

Agunbiade, S.O. and M.O. Sanni, 2001. The effect of ambient storage of cassava tubers on starch quality. Proceedings of the 8th Triennial Symposium of the International Society for Tropical Root Crops-African Branch, November 12-16, 2001, Ibadan, Nigeria, pp: 189-194.

Udensi, A. and O. Eke, 2000. Proximate composition and functional properties of flour produced from Mucuna cochinensis and Mucuna utles. Proceedings of the 1st Annual Conference of the College of Agriculture and Veterinary Medicine, September 10-13, 2000, Abia State University, Nigeria, pp: 170-174.

Navickis, L.L., 1987. Corn flour addition to wheat flour doughs-effect on rheological properties. Cereal Chem., 64: 307-310.

Almazan, A.M., 1990. Effect of cassava flour variety and concentration on bread loaf quality. Cereal Chem., 67: 97-99.

Khalil, A.H., E.H. Mansour and F.M. Dawoud, 2000. Influence of malt on rheological and baking properties of wheat-cassava composite flours. LWT-Food Sci. Technol., 33: 159-164.

Hatcher, D.W., G.G. Bellido and M.J. Anderson, 2009. Flour particle size, starch damage and alkali reagent: Impact on uniaxial stress relaxation parameters of yellow alkaline noodles. Cereal Chem., 86: 361-368.

Tian, Q., M. Streuli, H. Saito, S.F. Schlossman and P. Anderson, 1991. A polyadenylate binding protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. Cell, 67: 629-639.

Defloor, I., M. Nys and J.A. Delcour, 1993. Wheat starch, cassava starch and cassava flour impairment of the breadmaking potential of wheat flour. Cereal Chem., 70: 526-526.

Defloor, I., R. Leijskens, M. Bokanga and J.A. Delcour, 1995. Impact of genotype, crop age and planting season on the breadmaking and gelatinisation properties of cassava (Manihot esculenta Crantz) flour. J. Sci. Food Agric., 68: 167-174.

Downloads

Published

15.05.2019

Issue

Section

Research Article

How to Cite

Lagnika, C., Houssou, P. A., Dansou, V., Hotegni, A. B., AMOUSSA, A. M. O., Kpotouhedo, F. Y., Doko, S. A., & Lagnika, L. (2019). Physico-Functional and Sensory Properties of Flour and Bread Made from Composite Wheat-Cassava. Pakistan Journal of Nutrition, 18(6), 538–547. https://doi.org/10.3923/pjn.2019.538.547

Most read articles by the same author(s)