Effects of Carbohydrate-Rich Diets Containing Snail Digestive Juice on the Growth Performance and Glycosidase Activities of Nile Tilapia (Oreochromis niloticus)
DOI:
https://doi.org/10.3923/pjn.2019.716.725Keywords:
Carbohydrate-rich diets, fishmeal, growth performances, Oreochromis niloticus, snail digestive juiceAbstract
Background and Objective: In fish feed, fishmeal is the main source of protein that provides energy for fish growth. However, its availability is limited due to the overexploitation of capture fisheries and its price continues to increase each year. The replacement of fishmeal with less expensive energy-rich feed ingredients is necessary for the sustainable development of aquaculture. The objective of this study was to evaluate the effects of different levels of the digestive juice of the snail Archachatina ventricosa in carbohydrate-rich diets on the growth performance and intestinal glycosidase activities of Nile tilapia (Oreochromis niloticus) Materials and Methods: Five experimental diets (R-0, R-1.5, R-2.5, R-5 and R-I) were formulated based on different levels of snail digestive juice (0, 15, 25 and 50 mg g–1). The diet R-I contained 5% inactivated digestive juice. O. niloticus fingerlings with an initial body weight of 22.55±2.29 g reared in glass hatchery tanks were fed with the experimental diets for 56 days. Results: The daily weight gain (DWG), specific growth rate (SGR), feed conversion rate (FCR), protein efficiency ratio (PER), intestinal glycosidase activities and fish body composition were significantly (p<0.05) influenced by the digestive juice. The DWG, SGR, FCR and PER were higher in the fish fed with the diet R-5. The 2.5% digestive juice was shown to have high invertase activity in the intestines of the fish. Conclusion: This study showed that the incorporation of 5% digestive juice from the snail A. ventricosa in experimental diets containing 40% carbohydrates improved growth in juvenile tilapia, O niloticus. The determination of the optimum content of the digestive juice enzyme would better use this ingredient in the formulation of carbohydrate-based fish feeds.
References
Tacon, A.G.J. and M. Metian, 2008. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285: 146-158.
Watanabe, T., 2002. Strategies for further development of aquatic feeds. Fish Sci., 68: 242-252.
Glencross, B.D., M. Booth and G.L. Allan, 2007. A feed is only as good as its ingredients: A review of ingredient evaluation strategies for aquaculture feeds. Aquacult. Nutr., 13: 17-34.
Gatlin III, D.M., F.T. Barrows, P. Brown, K. Dabrowski and T.G. Gaylord et al., 2007. Expanding the utilization of sustainable plant products in aquafeeds: A review. Aquacult. Res., 38: 551-579.
Huntington, T.C. and M.R. Hasan, 2009. Fish as Feed Inputs for Aquaculture-Practices, Sustainability and Implications: A Global Synthesis. In: Fish as Feed Inputs for Aquaculture: Practices, Sustainability and Implications, Hasan, M.R. and M. Halwart (Eds.). Food and Agriculture Organization, Rome, Italy, ISBN: 978-92-5-106419-1, pp: 1-61.
Otchoumou, A.K., C.M. Ble, O.A. Etchian, Y.L. Alla, S.L. Niamke and J.K. Diopoh, 2012. Effects of increasing dietary protein levels on growth, feed utilization and body composition of Heterobranchus longifilis (Valenciennes, 1840) fingerlings. Afr. J. Biotechnol., 11: 524-529.
Kiessling, A., 2009. Feed-the Key to Sustainable Fish Farming. In: Fisheries, Sustainability and Development, KSLA (Eds.). Royal Swedish Academy of Agriculture and Forestry (KSLA), Stockholm, Sweden, ISBN: 91-85205-87-5, pp: 303-322.
Luquet, P., 1991. Tilapia, Oreochromis sp. In: Handbook of Nutrient Requirements of Finfish, Wilson, R.P. (Ed.). CRC Press, Boca Raton, FL., USA., pp: 169-179.
Charo-Karisa, H., H. Komen, M.A. Rezk, R.W. Ponzoni, J.A. van Arendonk and H. Bovenhuis, 2006. Heritability estimates and response to selection for growth of Nile tilapia (Oreochromis niloticus) in low-input earthen ponds. Aquaculture, 261: 479-486.
Trewavas, E., 1983. Tilapiine Fishes of the Genera Sarotherodon, Oreochromis and Danakilia. British Museum (Natural History), London, UK., ISBN-13: 9780565008789, Pages: 583.
Montcho, S.A., H. Agadjihouede, E. Montchowui, P.A. Laleye and J. Moreau, 2015. Population parameters of Oreochromis niloticus (Cichlidae) recently introduced in Lake Toho (Benin, West Africa). Int. J. Fish. Aquat. Stud., 2: 141-145.
Gomez-Marquez, J.L., B. Pena-Mendoza, I.H. Salgado-Ugarte and J.L. Arredondo-Figueroa, 2008. Age and growth of the tilapia, Oreochromis niloticus (Perciformes: Cichlidae) from a tropical shallow lake in Mexico. Rev. Biol. Trop., 56: 875-884.
Ble, C.M., O.A. Etchian, Y.L. Alla, A.A. Adingra, S. Niamke, J.K. Diopoh and R. Arfi, 2012. Seasonal effects of the water quality in ponds on nutritive potential and digestibility of tilapia Oreochromis niloticus in natural feeding condition (Mali, West Africa). Afr. J. Agric. Res., 7: 1436-1441.
Dos Santos, V.B., E.A. Mareco and M.D.P. Silva, 2013. Growth curves of Nile tilapia (Oreochromis niloticus) strains cultivated at different temperatures. Acta Scientiarum. Anim. Sci., 35: 235-242.
Abro, R., 2014. Digestion and metabolism of carbohydrates in fish. Ph.D. Thesis, Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden.
Azaza, M.S., N. Khiari, M.N. Dhraief, N. Aloui, M.M. Kraiem and A. Elfeki, 2015. Growth performance, oxidative stress indices and hepatic carbohydrate metabolic enzymes activities of juvenile Nile tilapia, Oreochromis niloticus L., in response to dietary starch to protein ratios. Aquacult. Res., 46: 14-27.
Katya, K., M.Z.S. Borsra, G. Kuppusamy, M. Herriman and N.A. Ali, 2017. Preliminary study to evaluate the efficacy of bambara groundnut (Vigna subterranea (L.) Verdc.) meal as the dietary carbohydrate source in Nile tilapia, Oreochromis niloticus. Madridge J. Aquacult. Res. Dev., 1: 13-17.
Shiau, S.Y. and M.S. Lei, 1999. Feeding strategy does affect carbohydrate utilization by hybrid tilapia Oreochromis niloticus×O. aureus. Fish. Sci., 65: 553-557.
Soro, R.Y., J.K. Diopoh, R.M. Willemot and D. Combes, 2007. Enzymatic synthesis of polyglucosylfructosides from sucrose alone by a novel α-glucosidase isolated from the digestive juice of Archachatina ventricosa (Achatinideae). Enzyme Microb. Technol., 42: 44-51.
Cisse, M., L.T. Zoue, Y.R. Soro, R.M. Meganaou and S. Miamke, 2013. Physicochemical and functional properties of starches of two Quality Protein Maize (QPM) grown in Cote d'Ivoire. J. Applied Biosci., 66: 5130-5139.
Niamke, A.M., S.J. Saki, T.B. Sea, P. Ezoua, O.K. Chatigre, N.G. Agbo and A.J. Djaman, 2013. Physicochemical characterization, enzymatic and rheology of the flour of young shoots of palmyra (Borassus aethiopum Mart.). Asian J. Sci. Technol., 4: 36-47.
Yeo, G.M., M.C. Ble, K.A. Otchoumou, S. Dabonne, L.A. Yao and A.O. Etchian, 2017. Digestibility and growth performance in fingerlings of tilapia Oreochromis niloticus fed with diet containing high-carbohydrate ingredients. Int. J. Fish. Aquat. Stud., 5: 171-175.
Yeo, M.G., C.M. Ble, S. Dabonne, Y.L. Alla, A.K. Otchoumou and A.O. Etchian, 2017. Effect of dietary gelatinized starch on growth performance, feed utilization and body composition of Nile tilapia (Oreochromis niloticus L.). Int. J. Food Sci. Nutr., 2: 125-129.
Aminot, A. and M. Chaussepied, 1983. Manuel des Analyses Chimiques en Milieu Marin. Centre National pour l'Exploitation des Oceans (CNEXO), Paris, France, ISBN-13: 9782902721108, Pages: 395.
Luquet, P. and Y. Moreau, 1990. Energy-protein management by some warmwater finfishes. Proceedings of the Advances in Tropical Aquaculture Workshop, February 20-March 4, 1989, Tahiti, French Polynesia, pp: 751-755.
Horwitz, W. and AOAC, 2000. Official Methods of Analysis of AOAC International. 17th Edn., Association of Official Analytical Chemists, Gaithersburg, Maryland.
Taniguchi, H. and Y. Honnda, 2009. Amylases. In: Encyclopedia of Microbiology, Schaechter, M. (Ed.). 3rd Edn., Academic Press, New York, USA., ISBN: 978-0-12-373944-5, pp: 159-173.
Kulshrestha, S., P. Tyagi, V. Sindhi and K.S. Yadavilli, 2013. Invertase and its applications-a brief review. J. Pharm. Res., 7: 792-797.
Bernfeld, P., 1955. Amylases, α and β. In: Methods in Enzymology, Volume 1: Preparation and Assay of Enzymes, Colowick, S.P. and N.O. Kaplan (Eds.). Chapter 17, Academic Press Inc., New York, USA., ISBN-13: 9780121818012, pp: 149-154.
Lowry, O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall, 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem., 193: 265-275.
Zar, J.H., 1984. Biostatistical Analysis.1 2nd Edn., Prentice-Hall Inc., Englewood Cliffs, NJ., USA., ISBN-13: 9780130779250, pp: 236-243.
Hixson, S.M., 2014. Fish nutrition and current issues in aquaculture: The balance in providing safe and nutritious seafood, in an environmentally sustainable manner. J. Aquacult. Res. Dev., Vol. 5.
De Silva, S.S., K.F. Shim and A.K. Ong, 1990. An evaluation of the method used in digestibility estimations of a dietary ingredient and comparisons on external and internal markers and time of faeces collection in digestibility studies in the fish Oreochromis aureus (Steindachner). Reprod. Nutr. Dev., 30: 215-226.
Abadom, F.E. and D.W. Milsom, 1991. Digestive enzymes of the West African giant land snail, Archachatina marginata. ‎Biochem. Soc. Trans., 19: 334S-334S.
Flari, V. and M. Lazaridou-Dimitriadou, 1996. Evolution of digestion of carbohydrates in the separate parts of the digestive tract of the edible snail Helix lucorum (Gastropoda: Pulmonata: Stylommatophora) during a complete 24-hour cycle and the first days of starvation. J. Comp. Physiol. B, 165: 580-591.
Saki, S.J., T.B. Sea, K.M. Koffi, Y.R. Soro, K.A. Kra and K.J. Diopoh, 2014. Purification and physicochemical characterization of the α-glucosidase of the digestive juice of the snail Limicolria flammea (Muller 1774). Int. J. Plant Anim. Environ. Sci., 4: 376-388.
Castillo, S. and D.M. Gatlin III, 2015. Dietary supplementation of exogenous carbohydrase enzymes in fish nutrition: A review. Aquaculture, 435: 286-292.
Ao, T., 2011. Using Exogenous Enzymes to Increase the Nutritional Value of Soybean Meal in Poultry Diet. In: Soybean and Nutrition, El-Shemy, H. (Ed.). Chapter 10, InTech Publisher, Rijeka, Croatia, ISBN 978-953-307-536-5, pp: 201-214.
Guionie, O., C. Moallic, S. Niamke, G. Placier, J.P. Sine and B. Colas, 2003. Identification and primary characterization of specific proteases in the digestive juice of Archachatina ventricosa. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol., 135: 503-510.
Ademolu, K.O., O.D. Fakeye, G.A. Dedeke, O.A. Ajayi and A.B. Idowu, 2013. Digestive enzymes in African giant land snail (Archachatina marginata) during aestivation. Arch. Zootec., 62: 73-77.
Al-Tameemi, R., A. Aldubaikul and N.A. Salman, 2010. Comparative study of α-amylase activity in three Cyprinid species of different feeding habits from Southern Iraq. Turk. J. Fish. Aquat. Sci., 10: 411-414.
Fernandez, I., F.J. Moyano, M. Diaz and T. Martinez, 2001. Characterization of α-amylase activity in five species of Mediterranean sparid fishes (Sparidae, Teleostei). J. Exp. Mar. Biol. Ecol., 262: 1-12.
Bhilave, M.P., V.B. Nalawade and J.J. Kulkarni, 2014. Amylase activity of fingerlings of freshwater fish Labeo rohita fed on formulated feed. Int. J. Fish. Aquat. Stud., 2: 53-56.
Thongprajukaew, K., S. Kovitvadhi, U. Kovitvadhi and P. Preprame, 2017. Effects of feeding frequency on growth performance and digestive enzyme activity of sex-reversed Nile tilapia, Oreochromis niloticus (Linnaeus, 1758). Agric. Nat. Resour., 51: 292-298.
Chaudhuri, A., S. Mukherjee and S. Homechaudhuri, 2012. Diet composition and digestive enzymes activity in carnivorous fishes inhabiting mudflats of Indian Sundarban estuaries. Turk. J. Fish. Aquat. Sci., 12: 265-275.
Moreau, Y., V. Desseaux, R. Koukiekolo, G. Marchis-Mouren and M. Santimone, 2001. Starch digestion in tropical fishes: Isolation, structural studies and inhibition kinetics of α-amylases from two tilapias Oreochromis niloticus and Sarotherodon melanotheron. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol., 128: 543-552.
Fagbenro, O., O. Adedire, O. Fateru, I. Oluwabukola and O. Ogunlana et al., 2005. Digestive enzyme assays in the gut of Oreochromis niloticus Linnaeus 1757, Parachanna (Channa) obscura Gunther 1861 and Gymnarchus niloticus Cuvier 1829. Anim. Res. Int., 2: 292-296.
Lupatsch, I., G.W. Kissil and D. Sklan, 2003. Comparison of energy and protein efficiency among three fish species gilthead sea bream (Sparus aurata), European sea bass (Dicentrarchus labrax) and white grouper (Epinephelus aeneus): Energy expenditure for protein and lipid deposition. Aquaculture, 225: 175-189.
Shiau, S.Y. and C.Y. Peng, 1993. Protein-sparing effect by carbohydrates in diets for tilapia, Oreochromis niloticus×O. aureus. Aquaculture, 117: 327-334.
Smith, R.R., 1971. A method for measuring digestibility and metabolizable energy of fish feeds. Progr. Fish.-Cult., 33: 132-134.
Page, J.W. and J.W. Andrews, 1973. Interactions of dietary levels of protein and energy on channel catfish (Ictalurus punctatus). J. Nutr., 103: 1339-1346.
Downloads
Published
Issue
Section
License
Copyright (c) 2019 The Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.