Antioxidant and Antihyperlipidemic Properties of Different Granulometric Classes of Adansonia digitata Pulp Powder


Authors

  • Ngatchic Metsagang Therese Josiane Department of Food Science and Nutrition, National School of Agro-industrial Science, University of Ngaoundere, Ngaoundere, P.O. Box 455, Cameroon
  • Fomekong Guy Christian Department of Food Science and Nutrition, National School of Agro-industrial Science, University of Ngaoundere, Ngaoundere, P.O. Box 455, Cameroon
  • Ndjantou Elie Baudelaire Department of Food Science and Nutrition, National School of Agro-industrial Science, University of Ngaoundere, Ngaoundere, P.O. Box 455, Cameroon
  • Njintang Yanou Nicolas Department of Biological Sciences, Faculty of Sciences, University of Ngaoundere, Ngaoundere, Cameroon

DOI:

https://doi.org/10.3923/pjn.2020.393.403

Keywords:

Adansonia digitata, antihyperlipidemic activity, antioxidants, particle size, phenolic compounds

Abstract

Background and Objectives: Baobab pulp is widely used nowadays for its richness in bioactive compounds. Recent studies have shown that the bioactive composition and biological activities of plants can be improved by splitting the powder. However, the granulometric class with the most concentration of bioactive compounds varies from one plant to another. This work aimed at evaluating the effect of particle size of Adansonia digitata pulp powder on its antioxidant and antihyperlipidemic activities. Materials and Methods: Three particle size classes, <50 μm, 100-50 μm and >100 μm, were obtained by the Comminution and controlled Differential Screening method (CDS-extraction) and were studied. The phenolic content, In vitro antioxidant activity of different granulometric classes were evaluated by DPPH, ABTS and power reducing tests were carried out. The in vivo antioxidant and antihyperlipidemic properties were evaluated by hyperlipidemia induction in rats. Results: We found that the highest phenolic contents and in vitro antioxidant activity were obtained for the <50 μm fraction. This fraction mostly reduced the level of Malondialdehyde (MDA) and increased the activity of Superoxide dismutase (SOD) and Catalase significantly (p<0.05) in plasma and various organs of rats as compared to the unsieved powder. Maximum reduction in Triglycerides (TG), total cholesterol (TC) and LDL-C as well as the greatest increase in HDL-C was also observed with this fraction. Conclusion: This study revealed that phenolic content and these activities increased with the decrease in particle size. A significant correlation was then observed between the content of phenolic compounds and the biological activities. Fraction <50 μm could therefore be used in the nutraceutical industry for the formulation of new products with a higher value in bioactive compounds.

References

Ibrahima, C., M. Didier, R. Max, D. Pascal, Y. Benjamin and B. Renaud, 2013. Biochemical and nutritional properties of baobab pulp from endemic species of Madagascar and the African mainland. Af. J. Agric. Res., 8: 6046-6054.

Garnaud, S., 2020. Le baobab en Afrique, plus qu'un symbole, une ressource : l'arbre aux mille usages. https://www.futura-sciences.com/planete/dossiers/botanique-baobab-arbre-pharmacien-arbre-vie-666/page/6/

Eyog, M.O., O. Ndoye, J. Kengue and A. Awono, 2006. Les Fruitiers Forestiers Comestibles du Cameroun. International Plant Genetic Resources Institute Cotonou, Benin Page: 204.

Hanafy, A., H.M. Aldawsari, J.M. Badr, A.K. Ibrahim and S.E.S. Abdel-Hady, 2016. Evaluation of hepatoprotective activity of Adansonia digitata extract on acetaminophen-induced hepatotoxicity in rats. Evidence-Based Complementary Altern. Med., Vol. 2016.

Al-Qarawi, A.A., M.A. Al-Damegh and S.A. El-Mougy, 2003. Hepatoprotective influence of adansonia digitata pulp. J. Herbs, Spices Med. Plants., 10: 1-6.

Elsaid, F.G., 2013. The effect of seeds and fruit pulp of Adansonia digitata L. (Baobab) on ehrlich ascites carcinoma. Food Nutr. Sci., 4: 38-46.

Braca, A. C. Sinisgalli, M.D. Leo, B. Muscatello and P.L. Cioni et al., 2018. Phytochemical profile, antioxidant and antidiabetic activities of Adansonia digitata L. (Baobab) from mali, as a source of health-promoting compounds. Molecules, 23: 3104-3122.

Elamin, O.F., K.A.A. Atti and A.M. Dalia, 2019. Effect of baobab (Adansonia digitata) pulp powder on serum lipid profile of rats fed high lipid diets. Pak. J. Nutr., 18: 1053-1057.

Tembo, D.T., M.J. Holmes and L.J. Marshall, 2017. Effect of thermal treatment and storage on bioactive compounds, organic acids and antioxidant activity of baobab fruit (Adansonia digitata) pulp from Malawi. J. Food Compos. Anal., 58: 40-51.

Ismail, B.B., Y. Pu, M. Guo, X. Ma and D. Liu, 2019. LC-MS/QTOF identification of phytochemicals and the effects of solvents on phenolic constituents and antioxidant activity of baobab (Adansonia digitata) fruit pulp. Food Chem., 277: 279-288.

Nelson, R.H., 2013. Hyperlipidemia as a risk factor for cardiovascular disease. Primary Care: Clin. Office Practice, 40: 195-211.

Siti, H.N., Y. Kamisah and J. Kamsiah, 2015. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vasc. Pharmacol., 71: 40-56.

Lamien-Meda, A., C.E. Lamien, M.M.Y. Compaoré, R.N.T. Meda and M. Kiendrebeogo et al., 2008. Polyphenol content and antioxidant activity of fourteen wild edible fruits from Burkina Faso. Molecules, 13: 581-594.

Braca, A. C. Sinisgalli, M.D. Leo, B. Muscatello and P.L. Cioni et al., 2018. Phytochemical profile, antioxidant and antidiabetic activities of Adansonia digitata L. (Baobab) from mali, as a source of health-promoting compounds. Molecules, 23: 3104-3122.

de Caluwe, E., K. Halamova and P. van Damme, 2010. Adansonia digitata L.: A review of traditional uses, phytochemistry and pharmacology. Afr. Focus, 23: 11-51.

Sundarambal, M., P. Muthusamy, R. Radha and A.J. Suresh, 2015. A review on Adansonia digitata Linn. J. Pharmacogn. Phytochem., 4: 12-16.

Azmir, J., I.S.M. Zaidul, M.M. Rahman, K.M. Sharif and A. Mohamed et al., 2013. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng., 117: 426-436.

Vilkhu, K., R. Mawson, L. Simons and D. Bates, 2008. Applications and opportunities for ultrasound assisted extraction in the food industry-A review. Innov. Food Sci. Emerg. Technol., 9: 161-169.

Kaufmann, B. and P. Christen, 2002. Recent extraction techniques for natural products: Microwave-assisted extraction and pressurised solvent extraction. Phytochem. Anal., 13: 105-113.

Penchev, P.I., 2010. Étude des Procédés d’extraction et de Purification de Produits Bioactifs à Partir de Plantes par Couplage de Techniques Séparatives à Basses et Hautes Pressions. PhD Thesis, Toulouse University, France

Grodowska, K. and A. Parczewski, 2010. Organic solvents in the pharmaceutical industry. Acta Poloniae Pharm., 67: 3-12.

Barnwal, P., K.K. Singh, A. Sharma, A.K. Choudhary and S.N. Saxena, 2015. Influence of pin and hammer mill on grinding characteristics, thermal and antioxidant properties of coriander powder. J. Food Sci. Technol., 52: 7783-7794.

Becker, L., A. Zaiter, J. Petit, M.C. Karam and M. Sudol, 2017. How do grinding and sieving impact on physicochemical properties, polyphenol content, and antioxidant activity of Hieracium pilosella L. powders? J. Funct. Foods, 35: 666-672.

Silva, G.G.D., M. Couturier, J.G. Berrin, A. Buléon and X. Rouau, 2012. Effects of grinding processes on enzymatic degradation of wheat straw. Bioresour. Technol., 103: 192-200.

Baudelaire, E., 2013. Comminution and controlled differential screening method for the dry extraction of natural active principles. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2013057379

Zaiter, A., L. Becker, J. Petit, D. Zimmer, M.C. Karam et al., 2016. Antioxidant and antiacetylcholinesterase activities of different granulometric classes of Salix alba (L.) bark powders. Powder Technol., 301: 649-656.

Becker, L., A. Zaiter, J. Petit, D. Zimmer and M.C. Karam et al., 2016. Improvement of antioxidant activity and polyphenol content of Hypericum perforatum and Achillea millefolium powders using successive grinding and sieving. Ind. Crops and Prod., 87: 116-123.

Deli, M., E.B. Ndjantou, J.T.N. Metsagang, J. Petit, N.N. Yanou and J. Scher, 2019. Successive grinding and sieving as a new tool to fractionate polyphenols and antioxidants of plants powders: Application to Boscia senegalensis seeds, Dichrostachys glomerata fruits, and Hibiscus sabdariffa calyx powders. Food Sci. Nutr., 7: 1795-1806.

Kim, D.O., K.W. Lee, H.J. Lee and C.Y. Lee, 2002. Vitamin C Equivalent Antioxidant Capacity (VCEAC) of phenolic phytochemicals. J. Agric. Food Chem., 50: 3713-3717.

Wafa, G., D. Amadou, K.M. Larbi and E.F.O. Héla, 2014. Larvicidal activity, phytochemical composition, and antioxidant properties of different parts of five populations of Ricinus communis L. Ind. Crops Prod., 56: 43-51.

Dewanto, V., X. Wu, K.K. Adom and R.H. Liu, 2002. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem., 50: 3010-3014.

Sun, B., J.M. Ricardo-da-Silva and I. Spranger, 1998. Critical factors of vanillin assay for catechins and proanthocyanidins. J. Agric. Food Chem., 46: 4267-4274.

Zhang, D. and Y. Hamauzu, 2004. Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chem., 88: 503-509.

Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med., 26: 1231-1237.

Oyaizu, M., 1986. Studies on products of browning reaction: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet., 44: 307-315.

Aissatou, D.S., J.T.N. Metsagang, C.D. Sokeng and N.Y. Njintang, 2017. Antihyperlipidemic and hypolipidemic properties of Tacca leontopetaloides (L.) Kuntze (Dioscoreales: Dioscoreaceae) tuber's aqueous extracts in the rats. Braz. J. Biol. Sci., 4: 67-80.

Garait, B., 2006. Le Stress Oxydant Induit par Voie Métabolique (Régimes Alimentaires) ou par Voie Gazeuse (Hyperoxie) et Effet de la Glisodin®. PhD Thesis, Joseph-Fourier-Grenoble University, France

Hsu, C.L. and G.C. Yen, 2007. Effect of gallic acid on high fat diet-induced dyslipidaemia, hepatosteatosis and oxidative stress in rats. Br. J. Nutr., 98: 727-735.

Yagi, K., 1976. A simple fluorometric assay for lipoperoxide in blood plasma. Biochem. Med., 15: 212-216.

Beauchamp, C. and I. Fridovich, 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem., 44: 276-287.

Sinha, A.K., 1972. Colorimetric assay of catalase. Anal. Biochem., 47: 389-394.

Richmond, W., 1973. Preparation and properties of a cholesterol oxidase from Nocardia sp. and its application to the enzymatic assay of total cholesterol in serum. Clin. Chem., 19: 1350-1356.

Friedewald, W.T., R.I. Levy and D.S. Fredrickson, 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem., 18: 499-502.

Brewer, L.R., J. Kubola, S. Siriamornpun, T. J. Herald and Y.C. Shi, 2014. Wheat bran particle size influence on phytochemical extractability and antioxidant properties. Food Chem., 152: 483-490.

Barron, C., J. Abecassis, M. Chaurand, V. Lullien-Pellerin and F. Mabille et al., 2012. Accès à des molécules d’intérêt par fractionnement par voie sèche. Innovations Agronomiques, 19: 51-62.

Lucasâ€González, R., J. Fernándezâ€López, J.Ã. Pérezâ€Ãlvarez and M. Viudaâ€Martos, 2018. Effect of particle size on phytochemical composition and antioxidant properties of two persimmon flours from Diospyros kaki Thunb. vars. ‘Rojo Brillante’ and ‘Triumph’ coâ€products. J. Sci. Food Agric., 98: 504-510.

Li, S., H.Y. Tan, N. Wang, Z.J. Zhang, L. Lao, C.W. Wong and Y. Feng, 2015. The role of oxidative stress and antioxidants in liver diseases. Int. J. Mol. Sci., 16: 26087-26124.

Salvamani, S., B. Gunasekaran, N.A. Shaharuddin, S.A. Ahmad and M.Y. Shukor, 2014. Antiartherosclerotic effects of plant flavonoids. BioMed Res. Int., Vol. 2014.

Alhassan, A.J. I.U. Muhammad, I.K. Jarumi and A.M. Wudil, 2016. Evaluation of anti-hyperlipidemic potentials of aqueous fruit pulp extract of Adensonia digitata in experimental rats. Eur. Sci. J., 12: 298-308.

Downloads

Published

15.07.2020

Issue

Section

Research Article

How to Cite

Therese Josiane, N. M., Christian, F. G., Baudelaire, N. E., & Nicolas, N. Y. (2020). Antioxidant and Antihyperlipidemic Properties of Different Granulometric Classes of Adansonia digitata Pulp Powder. Pakistan Journal of Nutrition, 19(8), 393–403. https://doi.org/10.3923/pjn.2020.393.403