Effect of Four Treated Forms of Lemna minor on Zootechnical Balance and Digestive Performance of Juvenile Tilapia (Oreochromis niloticus) in Côte d'Ivoire (West Africa)


Authors

  • Paul Simplice Djeke ORCiD Centre de Recherches Oceanologiques, Département Aquaculture, Abidjan 01 BP V 18, Côte d’Ivoire
  • Paul Simplice Djeke ORCiD Centre de Recherches Oceanologiques, Département Aquaculture, Abidjan 01 BP V 18, Côte d’Ivoire
  • Gopéyué Maurice Yeo ORCiD Centre de Recherches Oceanologiques, Département Aquaculture, Abidjan 01 BP V 18, Côte d’Ivoire
  • Koffi Parfait Kouame ORCiD Centre de Recherches Oceanologiques, Département Aquaculture, Abidjan 01 BP V 18, Côte d’Ivoire
  • Yao Laurent Alla ORCiD Centre de Recherches Oceanologiques, Département Aquaculture, Abidjan 01 BP V 18, Côte d’Ivoire
  • Atsé Roméo Franck Amian ORCiD Institut Pédagogique National de l'Enseignement Technique et Professionnel, Département de Formation des Formateurs aux Métiers de l'Agriculture, Abidjan 08 BP 2098, Côte d’Ivoire
  • Adou Francis Yapo ORCiD URF Biosciences, Laboratoire de Biologie et Santé, Université Felix Houphoüet-Boigny, Abidjan 01 BP V 34, Côte d’Ivoire
  • Melecony Celestin Ble ORCiD Centre de Recherches Oceanologiques, Département Aquaculture, Abidjan 01 BP V 18, Côte d’Ivoire

DOI:

https://doi.org/10.3923/pjn.2022.35.46

Keywords:

Côte d'Ivoire, Lemna minor, nutrient digestibility, nutritional value, Oreochromis niloticus, Zootechnical balance

Abstract

Background and Objective: The incorporation rate of fish meal in compound feeds of aquaculture is currently reduced due to the higher demand and price. This study was conducted to assess the nutritional value and digestive utilization of four treated forms of Lemna minor in the diet of tilapia. Materials and Methods: Four treatments (shade-drying, oven drying, pre-cooking-drying and fermentation-drying) were applied to reduce anti-nutritional factors (oxalate, phytates, tannins and saponins). Four experimental diets, each including 70% of reference diet and 30% of treated forms of L. minor, were formulated. After 8 weeks of feeding in hatchery of aquaria, faeces were sampled for analyses. Results: The results showed that the reduction of anti-nutritional factors by the three heat treatments was less than 30% for oxalate, while tannins, phytates and saponins were reduced from 50-90%. The best reduction rates (90%) were found with fermented L. minor for tannins, phytates and saponins and 30% for oxalate. The study revealed high apparent digestibility coefficients (ADC) in proteins (81.68%) and energy (78.47%) for fish fed with fermented L. minor. Low digestive coefficients in protein (65.56%) and energy (62.20%) was observed for fish fed with pre-cooked-dried L. minor, while high digestible protein content (33.16 mg g–1) was observed for fermented leaves. Fermented leaves diet had the highest protein retention coefficient (47.56%) and the pre-cooked-dried leaves diet had the lowest value (14.30%). Conclusion: In Côte d'Ivoire, fermented L. minor could be used as a protein supplement in fish feed formulation.

References

FAO., 2022. La situation mondiale des pêches et de l’aquaculture. https://www.fao.org/3/cc0461fr/online/sofia/2022/aquaculture-production.html

Etienne, H., W.K. John, L. Sandra, I.N. Ahmad, T.Victoria et al., 2022. Prospects for aquaculture development in Africa. Center for Development Research (ZEF). https://bonndoc.ulb.uni-bonn.de/xmlui/handle/20.500.11811/9582

FAO., 2020. The State of World Fisheries and Aquaculture (SOFIA). Food and Agriculture Organization, Rome, Italy, Pages: 247.

Ragasa, C., H. Charo-Karisa, E. Rurangwa, N. Tran and K.M. Shikuku, 2022. Sustainable aquaculture development in sub-Saharan Africa. Nat. Food, 3: 92-94.

Rege, J.E.O. and J.W. Ochieng, 2022. The state of capacities, enabling environment, applications and impacts of biotechnology in the sub-Saharan Africa aquaculture sector. In: Agricultural Biotechnology in Sub-Saharan Africa. Rege, J.E.O. and K. Sones (Eds.). Springer Cham, pp: 145–171.

FAO., 2018. La situation mondiale des pêches et de l’aquaculture 2018. Atteindre les objectifs de développement durable. Food and Agriculture Organization of the United Nations

Médale, F. and S. Kaushik, 2008. Evolution des recherches en nutrition piscicole à l’INRA: Substitution des produits d’origine marine dans l’alimentation des poissons d’élevage. INRA Prod. Anim., 21: 87-94.

Muringai, R.T., P. Mafongoya and R.T. Lottering, 2022. Sub-Saharan Africa freshwater fisheries under climate change: A review of impacts, adaptation, and mitigation measures. Fishes.

Kaliba, A.R., C.C. Ngugi, J.M. Mackambo, K.O. Osewe, E. Senkondo, B.V. Mnembuka and S.Amisah, 2007. Potential effect of aquaculture promotion on poverty reduction in Sub-Saharan Africa. Aquacult. Int. 15: 445-459.

Burel, C. and F. Médale, 2014. Quid de l’utilisation des protéines d’origine végétale en aquaculture? Oilseeds fats, Crops Lipids.

Daniel, N., 2018. A review on replacing fish meal in aqua feeds using plant protein sources. Int. J. Fish. Aquat. Stud., 6: 164-179.

Yeo, G.M., M.C. Ble, K.A. Otchoumou, S. Dabonne, L.A. Yao and A.O. Etchian, 2017. Digestibility and growth performance in fingerlings of tilapia Oreochromis niloticus fed with diet containing high-carbohydrate ingredients. Int. J. Fish. Aquat. Stud., 5: 171-175.

Tran-Ngoc, K.T., M.N. Haidar, A.J. Roem, J. Sendão, J.A. J. Verreth and J.W. Schrama, 2019. Effects of feed ingredients on nutrient digestibility, nitrogen/energy balance and morphology changes in the intestine of Nile tilapia (Oreochromis niloticus). Aquac. Res., 50: 2577-2590.

Sońta, M., A. Rekiel and M. Batorska, 2019. Use of duckweed (Lemna L.) in sustainable livestock production and aquaculture – A review. Ann. Anim. Sci., 19: 257-271.

Talukdar, M.Z.H., M. Shahjahan and M.S. Rahman, 2013. Suitability of duckweed (Lemna minor) as feed for fish in polyculture system. Int. J. Agric. Res., Innovat. Technol., 2: 42-46.

Chakrabarti, R., W.D. Clark, J.G. Sharma, R.K. Goswami, A.K. Shrivastav and D.R. Tocher, 2018. Mass production of Lemna minor and its amino acid and fatty acid profiles. Front. Chem., Vol. 6.

Negesse, T., H.P.S. Makkar and K. Becker, 2009. Nutritive value of some non-conventional feed resources of Ethiopia determined by chemical analyses and an in vitro gas method. Anim. Feed Sci. Technol., 154: 204-217.

Okpara, O., G.O. Okagbare and J.O. Akpodiete, 2018. Effect of different processing methods on the nutrient composition and anti-nutritional factors of Gmelina arborea leaves in Anwai community, Delta State, Nigeria. ABAH Bioflux, Vol. 10.

Cruz, Y., C. Kijora, E. Wedler, J. Danier and C. Schulz, 2011. Fermentation properties and nutritional quality of selected aquatic macrophytes as alternative fish feed in rural areas of the Neotropics. Livest. Res. Rural Dev., Vol. 22.

Utami, D.A.S., Widanarni and M.A. Suprayudi, 2015. Quality of dried Bacillus NP5 and its effect on growth performance of tilapia (Oreochromis niloticus). Pak. J. Biol. Sci., 18: 88-93.

Widanarni and Tanbiyaskur, 2015. Application of probiotic, prebiotic and synbiotic for the control of streptococcosis in tilapia Oreochromis niloticus. Pak. J. Biol. Sci., 18: 59-66.

Agung, L.A., Widanarni and M. Yuhana, 2015. Application of micro-encapsulated probiotic Bacillus NP5 and prebiotic Mannan Oligosaccharide (MOS) to prevent streptococcosis on Tilapia Oreochromis niloticus. Res. J. Microbiol., 10: 571-581.

Tamamdusturi, R., Widanarni and M. Yuhana, 2016. Administration of microencapsulated probiotic Bacillus sp. NP5 and prebiotic mannan oligosaccharide for prevention of Aeromonas hydrophila infection on Pangasianodon hypophthalmus. J. Fish. Aquat. Sci., 11: 67-76.

Ricky Djauhari, Widanarni , Sukenda , Muhammad Agus Suprayudi, Muhammad Zairin Jr. 2016. Characterization of Bacillus sp. NP5 and its Application as Probiotic for Common Carp (Cyprinus carpio) Res. J. Microbiol., 11: 101-111.

Mason, R.P., M. Coulibaly, G. Hansen, H. Inman, P.K. Myer and K.M. Yaoc, 2022. An examination of mercury levels in the coastal environment and fish of Cote d’Ivoire. Chemosphere, Vol. 300.

Ozreticha, R.W., C.L. Wood, F. Allan, A.R. Koumi, R. Norman, A.S. Brierley, G.A. De Leo and D.C. Little, 2022. The potential for aquaculture to reduce poverty and control schistosomiasis in Côte d’Ivoire (Ivory Coast) during an era of climate change: A systematic review. Rev. Fish. Sci. Aquacult., 30: 467-497.

Tavares, F.de A., J.B.R. Rodrigues, D.M. Fracalossi, J. Esquivel and R. Roubach, 2008. Dried duckweed and commercial feed promote adequate growth performance of tilapia fingerlings. Biotemas, 21: 91-97.

Utomo, N.B.P., Nurfadhilah and J. Ekasari, 2015. Fermentation of Azolla sp. leaves and the utilization as a feed ingredient of tilapia Oreochromis sp. Jurnal Akuakultur Indonesia, 10: 137-143.

Cho, C.Y., S.T. Slinger and H.S. Bayley, 1982. Bioenergetics of salmonid fishes: Energy intake, expenditure and productivity. Comp. Biochem. Physiol. Part A: Physiol., 73: 25-41.

Page, J.W. and J.W. Andrews, 1973. Interactions of dietary levels of protein and energy on channel catfish (Ictalurus punctatus). J. Nutr., 103: 1339-1346.

Smith, R.R., 1971. A method for measuring digestibility and metabolizable energy of fish feeds. Progr. Fish.-Cult., 33: 132-134.

Choubert, G., 1999. La digestibilité des nutriments chez les poissons: Aspects de méthodologie. Société Française d'Ichtyologie, 23: 113-125.

Windell, J.T., J.W. Foltz and J.A. Sarokon, 1978. Methods of fecal collection and nutrient leaching in digestibility studies. Progressive Fish-Culturist, 40: 51-55.

AOAC and K. Helrich, 1990. Official Methods of Analysis of the Association of Official Analytical Chemists. 15th Edn., Association of Official Analytical Chemists, Arlington, VA, Washington, DC., USA, ISBN-13: 9780935584424, Pages: 655.

AOAC., 1995. The Official Method of Analysis of the Association of Official Analytical Chemists. 16th Edn., Association of Official Analytical Chemists, Washington DC.

Kerdchuen, N., 1992. Artificial Feeding of an African Catfish, Heterobranchus Longifilis (Teleostei: Clariidae): Incidence of Feeding Mode and First Estimate of Nutritional Requirements. Phd Thesis, https://www.theses.fr/1992PA066196

Bolin, D.W., R.P. King and E.W. Klosterman, 1952. A simplified method for the determination of Chromic Oxide (Cr2O3) when used as an index substance. Science, 116: 634-635.

Brooks, S.P.J., D. Oberleas, B.A. Dawson, B. Belonje and B.J. Lampi, 2001. Proposed phytic acid standard including a method for its analysis. J. AOAC Int., 84: 1125-1129.

AOAC., 1984. Official Methods of Analysis of the Association of Official Analytical Chemists. 14th Edn., Association of Official Analytical Chemists Inc., Virginia, USA.

Seigler, D.S., S. Seilheimer, J. Keesy and H.F. Huang, 1986. Tannins from four common Acacia species of Texas and Northeastern Mexico. Seigler, D.S., S. Seilheimer, J. Keesy and H.F. Huang, 40: 220-232.

Robaina, L., G. Corraze, P. Aguirre, D. Blanc, J.P. Melcion and S. Kaushik, 1999. Digestibility, postprandial ammonia excretion and selected plasma metabolites in European sea bass (Dicentrarchus labrax) fed pelleted or extruded diets with or without wheat gluten. Aquaculture, 179: 45-56.

Sugiura, S.H., F.M. Dong, C.K. Rathbone and R.W. Hardy, 1998. Apparent protein digestibilty and mineral availabilities in various feed ingredients for salmonid feeds. Aquaculture, 159: 177-202.

de Carvalho, M.A.G., L.F.L. Fernandes and L.D. Gomes, 2017. Digestibility, protein retention rate and ammonia excretion in juvenile fat snook (Centropomus parallelus) fed with different protein levels. Cienc. Rural, Vol. 47.

Adebayo, K.O., R.M. Akinbode, V.O.A. Ojo, R.Y. Aderinboye and C.F.I. Onwuka, 2019. Effect of different processing methods on chemical composition and in vitro gas production of some browse plants for ruminant feeding. Niger. J. Anim. Sci., 21: 165-174.

Bairagi, A., K.S. Ghosh, S.K. Sen and A.K. Ray, 2002. Duckweed (Lemna polyrhiza) leaf meal as a source of feedstuff in formulated diets for rohu (Labeo rohita Ham.) fingerlings after fermentation with a fish intestinal bacterium. Bioresour. Technol., 85: 17-24.

Gilani, G.S., C.W. Xiao and K.A. Cockell, 2012. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Br. J. Nutr., 108: S315-S332.

Ghosh, K., S.K. Sen and A.K. Ray, 2004. Growth and survival of rohu, Labeo rohita (Hamilton) spawn fed diets fermented with intestinal bacterium, Bacillus circulans. Acta Ichthyol. Piscat., 34: 155-165.

Saha, S. and A.K. Ray, 2011. Evaluation of nutritive value of water hyacinth (Eichhornia crassipes) leaf meal in compound diets for rohu, Labeo rohita (Hamilton, 1822) fingerlings after fermentation with two bacterial strains isolated from fish gut. Turkish J. Fish. Aqua. Sci., 11: 199-209.

Jauncey, K. and B. Ross, 1982. A Guide to Tilapia Feeds and Feeding. Institute of Aquaculture, University of Stirling, Scotland, UK.

Weng, T.M. and M.T. Chen, 2010. Changes of protein in natto (a fermented soybean food) affected by fermenting time. Food Sci. Technol., Res., 16: 537-542.

Sami, U., Q. Shao, I. Ullah, A. Zuberi, M.N.K. Khattak et al., 2020. Commercially available probiotic enhanced growth, digestion and immune response of rohu (Labeo rohita) reared in earthen pond. Isr. J. Aquac., 72: 1-10.

Santos, R.A., A. Oliva-Teles, P. Pousão-Ferreira, R. Jerusik, M.J. Saavedra, P. Enes and C.R. Serra, 2021. Isolation and characterization of fish-gut Bacillus spp. as source of natural antimicrobial compounds to fight aquaculture bacterial diseases. Marine Biotechnol., 23: 276-293.

Kumar, A. and R. Das, 1992. Utilization of diets containing composted aquatic weed (Salvinia cuculata) by the Indian major carp, Rohu Labeo rohita Ham.), fingerlings. Bioresour. Technol., 40: 67-72.

Cruz-Velásquez, Y., C. Kijora, W. Vásquez-Torres and C. Schulz, 2014. Digestibility coefficients of sun dried and fermented aquatic macrophytes for Cachama blanca, Piaractus brachypomus. Orinoquia, 18: 220-228.

Guéguen, J., S. Walrand and O. Bourgeois, 2016. Plant proteins: Context and potentialities for human food. Cah. Nutr. Diet., 51: 177-185.

Hontiveros, G.J.S. and A.E. Serrano, 2015. Nutritional value of water hyacinth (Eichhornia crassipes) leaf protein concentrate for aquafeeds. AACL Bioflux, 8: 26-33.

Kuebutornye, F.K.A., E.D. Abarike and Y. Lu, 2019. A review on the application of Bacillus as probiotics in aquaculture. Fish Shellfish Immunol., 87: 820-828.

Tran, N.T., W. Yang, X.T. Nguyen, M. Zhang and H. Ma et al., 2022. Application of heat-killed probiotics in aquaculture. Aquaculture, Vol. 548.

Wang, Y., J.R. Wang, D.Q. Bai, Y.L. Luo, G. Yang, G.X. Zhu and Q.H. Meng, 2022. Assessing the effectiveness of complex dietary candidate probiotics on growth performance, digestive enzyme activity, antioxidant capability, and intestinal microbiota of koi carp (Cyprinus carpio var. koi). Isr. J. Aquac. Bamid., 74: 1-19.

Downloads

Published

30.12.2022

Issue

Section

Research Article

How to Cite

Djeke, P. S., Djeke, P. S., Yeo, G. M., Kouame, K. P., Alla, Y. L., Amian, A. R. F., Yapo, A. F., & Ble, M. C. (2022). Effect of Four Treated Forms of Lemna minor on Zootechnical Balance and Digestive Performance of Juvenile Tilapia (Oreochromis niloticus) in Côte d’Ivoire (West Africa). Pakistan Journal of Nutrition, 21, 35–46. https://doi.org/10.3923/pjn.2022.35.46

Most read articles by the same author(s)