Definition of Extrusion Cooking Technology, the Food Industry in Focus: A Review
DOI:
https://doi.org/10.3923/pjn.2025.46.56Keywords:
Cereals, extruder, high temperature, mixing, shear, short-time, snacksAbstract
The aim of this paper was to review the different definitions of extrusion cooking of food available in literature. Extrusion cooking of food entails different unit operations in a single process whereby different food ingredients are uniformly mixed and forcefully passed through a die. It has been used in producing various shapes and sizes of food products. Extrusion technology is mostly applied in the manufacture of snacks, breakfast cereals and ready-to-eat food products and the more modern 3D breakfast cereals and snacks. Extrusion cooking involves a high temperature short time process and is very useful in producing low-fat snacks. Extrusion cooking of food entails different unit operations in a single process. An extruder has five major components, pre-conditioner, barrel, screw, die (usually with cutter) and the feeding system. It originated in the metallurgical industry. Food extruder may be classified thermally, geometrically or conveying mechanism based on applications, design and configurations. Extruders have the same operating principles, basically, a screw extruder is made up of a rotating screw in a fixed barrel and a die at the exit. Different types ofextruders have advantages and limitations. Different researchers have used a variety of raw material for extrusion cooking ranging from flours of cassava, maize, wheat, corn, millet and soybean. Pasta and breakfast cereals are the commonest extruded cereal-based food products.
References
Navale, S., S.B. Swami and N. Thakor, 2015. Extrusion Cooking Technology for Foods : A Review. J. Ready to Eat Food, 2: 66-80.
Brennan, J.G, 2005. Food processing handbook. 1st ed., Wiley, Weinheim, Germany, ISBN: 9783527307197, 9783527607570, Pages:582.
Muthukumarappan, K. and G.J. Swamy, 2018. Microstructure and its relationship with quality and storage stability of extruded products. In: Food Microstructure and Its Relationship with Quality and Stability, Devahastin, S., (Ed.). Woodhead Publishing, Sawston, Cambridge, pp: 161-191.
Offiah, V., V. Kontogiorgos and K.O. Falade, 2018. Extrusion processing of raw food materials and by-products: A review. Crit. Rev. Food Sci. Nutr., 59: 2979-2998.
Fellows, P, 2017. Extrusion cooking. In: Food Processing Technology, Fellows, P, (Ed.). Elsevier, Amsterdam, Cambridge, MA, pp: 753-780.
Tiwari, A. and S.K. Jha, 2017. Extrusion cooking technology: Principal mechanism and effect on direct expanded snacks – An overview. Int. J. Food Stud., 6: 113-128.
Bdour, M.A., G.J. Al-Rabadi, N.S. Al-Ameiri, A.Y. Mahadeen and M.H. Aaludatt, 2014. Microscopic analysis of extruded and pelleted barley and sorghum grains. Jordan J. Biol. Sci., 7: 227-231.
Shankar, A.S., C. Satyanarayana, S. Alavi, L. Edukondalu, M. Joseph and R. Lakshmipathy, 2018. Study on cereal-legume based complementary foods for infants. Int. J. Curr. Microbiol. Appl. Sci., 7: 3310-3317.
Rhee, K., S. Cho and A. Pradahn, 1999. Expanded extrudates from corn starch–lamb blends: Process optimization using response surface methodology. Meat Sci., 52: 127-134.
Boukid, F., S. Folloni, R. Ranieri and E. Vittadini, 2018. A compendium of wheat germ: Separation, stabilization and food applications. Trends Food Sci. Technol., 78: 120-133.
Smith, J. and A. Hardacre, 2011. Development of an extruded snack product from the legume Vicia faba minor. Procedia Food Sci., 1: 1573-1580.
Oliveira, L.C., M. Schmiele and C.J. Steel, 2017. Development of whole grain wheat flour extruded cereal and process impacts on color, expansion, and dry and bowl-life texture. LWT, 75: 261-270.
Ruiz-Ruiz, J., A. Martínez-Ayala, S. Drago, R. González, D. Betancur-Ancona and L. Chel-Guerrero, 2008. Extrusion of a hard-to-cook bean (Phaseolus vulgaris L.) and quality protein maize (Zea mays L.) flour blend. LWT - Food Sci. Technol., 41: 1799-1807.
Choudhury, M.H., R. Chakraborty and U.R. Chaudhuri, 2014. Thermal and microstructural property of extruded snack: An overview. Int. J. Eng. Res. Appl., 4: 9-18.
Ogunmuyiwa, O., A. Adebowale, O. Sobukola, O. Onabanjo, A. Obadina and T. Keith et al, 2017. Production and quality evaluation of extruded snack from blends of bambara groundnut flour, cassava starch, and corn bran flour. J. Food Process. Preserv., Vol. 41. 10.1111/jfpp.13183
Arivalagan, M., M. Manikantan, A. Yasmeen, S. Sreejith, D. Balasubramanian and S.R. Kanade et al, 2018. Physiochemical and nutritional characterization of coconut (Cocos nucifera L.) haustorium based extrudates. LWT, 89: 171-178.
Chávez, D.W., J.L. Ascheri, C.W. Carvalho, R.L. Godoy and S. Pacheco, 2017. Sorghum and roasted coffee blends as a novel extruded product: Bioactive compounds and antioxidant capacity. J. Funct. Foods, 29: 93-103.
Sujka, M., Z. Sokolowska, M. Hajnos and M. Wlodarczyk-Stasiak, 2016. Characterization of pore structure of rice grits extrudates using mercury intrusion porosimetry, nitrogen adsorption and water vapour desorption methods. J. Food Eng., 190: 147-153.
Obiang-Obounou, B.W. and G.H. Ryu, 2013. The effect of feed moisture and temperature on tannin content, antioxidant and antimicrobial activities of extruded chestnuts. Food Chem., 141: 4166-4170.
Dehghan-Shoar, Z., A.K. Hardacre and C.S. Brennan, 2010. The physico-chemical characteristics of extruded snacks enriched with tomato lycopene. Food Chem., 123: 1117-1122.
Athar, N., A. Hardacre, G. Taylor, S. Clark, R. Harding and J. McLaughlin, 2006. Vitamin retention in extruded food products. J. Food Compos. Anal., 19: 379-383.
Rodríguez-Miranda, J., I. Ruiz-López, E. Herman-Lara, C. Martínez-Sánchez, E. Delgado-Licon and M. Vivar-Vera, 2011. Development of extruded snacks using taro (Colocasia esculenta) and nixtamalized maize (Zea mays) flour blends. LWT - Food Sci. Technol., 44: 673-680.
Yu, L., H.S. Ramaswamy and J. Boye, 2013. Protein rich extruded products prepared from soy protein isolate-corn flour blends. LWT - Food Sci. Technol., 50: 279-289.
Jiddere, G. and K.B. Filli, 2015. The effect of feed moisture and barrel temperature on the essential amino acids profile of sorghum malt and bambara groundnut based extrudates. J. Food Process. Technol., Vol. 6. 10.4172/2157-7110.1000448
Berrios, J.D.J., P. Morales, M. Cámara and M. Sánchez-Mata, 2010. Carbohydrate composition of raw and extruded pulse flours. Food Res. Int., 43: 531-536.
Diaz, J.M.R., J.-P. Suuronen, K.C. Deegan, R. Serimaa, H. Tuorila and K. Jouppila, 2015. Physical and sensory characteristics of corn-based extruded snacks containing amaranth, quinoa and kañiwa flour. LWT - Food Sci. Technol., 64: 1047-1056.
Pardhi, S., B. Singh, G.A. Nayik and B. Dar, 2019. Evaluation of functional properties of extruded snacks developed from brown rice grits by using response surface methodology. J. Saudi Soc. Agric. Sci., 18: 7-16.
Timonen-Soivio, L., A. Sourander, H. Malm, S. Hinkka-Yli-Salomäki, M. Gissler and R. Vanhala et al, 2015. The association between autism spectrum disorders and congenital anomalies by organ systems in a finnish national birth cohort. J. Autism Dev. Disord., 45: 3195-3203.
Radovanovic, A., V. Stojceska, A. Plunkett, S. Jankovic, D. Milovanovic and S. Cupara, 2015. The use of dry Jerusalem artichoke as a functional nutrient in developing extruded food with low glycaemic index. Food Chem., 177: 81-88.
Kocherla, P., K. Aparna and D.N. Lakshmi, 2012. Development and evaluation of RTE (Ready To Eat) extruded snack using egg albumin powder and cheese powder. Agric. Eng. Int. : CIGR J., 14: 179-187.
Gbenyi, D.I., I. Nkama and M.H. Badau, 2016. Optimization of physical and functional properties of sorghum-bambara groundnut extrudates. J. Food Res., 5: 81-97.
Zhang, H., H. Wang, X. Cao and J. Wang, 2018. Preparation and modification of high dietary fiber flour: A review. Food Res. Int., 113: 24-35.
Kljak, K., E. Šárka, P. Dostálek, P. Smrčková and D. Grbeša, 2015. Influence of physicochemical properties of croatian maize hybrids on quality of extrusion cooking. LWT - Food Sci. Technol., 60: 472-477.
Jacques-Fajardo, G.E., R. Prado-Ramírez, E. Arriola-Guevara, E.P. Carrillo, H. Espinosa-Andrews and G.M.G. Morales, 2017. Physical and hydration properties of expanded extrudates from a blue corn, yellow pea and oat bran blend. LWT, 84: 804-814.
Hagenimana, A., X. Ding and W.Y. Gu, 2007. Steady state flow behaviours of extruded blend of rice flour and soy protein concentrate. Food Chem., 101: 241-247.
Janve, M. and R.S. Singhal, 2018. Fortification of puffed rice extrudates and rice noodles with different calcium salts: Physicochemical properties and calcium bioaccessibility. LWT, 97: 67-75.
Ananthanarayan, L., Y. Gat, V. Kumar, A. Panghal and N. Kaur, 2018. Extruded black gram flour: Partial substitute for improving quality characteristics of indian traditional snack. J. Ethnic Foods, 5: 54-59.
Lobato, L., D. Anibal, M. Lazaretti and M. Grossmann, 2011. Extruded puffed functional ingredient with oat bran and soy flour. LWT - Food Sci. Technol., 44: 933-939.
Altan, A., K.L. McCarthy and M. Maskan, 2009. Effect of screw configuration and raw material on some properties of barley extrudates. J. Food Eng., 92: 377-382.
Nkama, I. and K.B. Filli, 2006. Development and characterization of extruded fura from mixtures of pearl millet and grain legumes flours. Int. J. Food Prop., 9: 157-165.
Luo, S. and F. Koksel, 2023. Application of physical blowing agents in extrusion cooking of protein enriched snacks: Effects on product expansion, microstructure, and texture. Trends Food Sci. Technol., 133: 49-64.
Famuyide, O.Y., J. Lubaale, C. Ndiaye, K.G. Duodu and J.R. Taylor, 2024. Effect of extrusion cooking in combination with food-to-food fortification on the mineral bioaccessibility of African-type pearl millet-based porridge. NFS J., Vol. 34. 10.1016/j.nfs.2024.100165
Ariz-Hernandez, I., I. Astiasaran and D. Ansorena, 2025. Plant-based burgers: Effects of protein source, type of extrusion and cooking technology on oxidation status and in vitro digestibility. Future Foods, Vol. 12. 10.1016/j.fufo.2025.100712
Téllez-Morales, J.A., J. Rodríguez-Miranda, F.S. Serrano-Villa and G. Calderón-Domínguez, 2025. Extrusion cooking analysis of corn starch and WPI mixture as a model system on the microstructure and thermodynamic parameters. LWT, Vol. 226. 10.1016/j.lwt.2025.117963
Ticǎ, A., V.S. Pinnamaraju, E. Stirnemann and E.J. Windhab, 2025. Model predictive control of high moisture extrusion cooking. Control Eng. Pract., Vol. 162. 10.1016/j.conengprac.2025.106387
Robin, F. and S. Palzer, 2015. Texture of breakfast cereals and extruded products. In: Modifying Food Texture, Chen, J. and A. Rosenthal, (Eds.). Woodhead Publishing, Cambridge, UK, pp: 203-235.
Beck, S.M., K. Knoerzer and J. Arcot, 2017. Effect of low moisture extrusion on a pea protein isolate’s expansion, solubility, molecular weight distribution and secondary structure as determined by fourier transform infrared spectroscopy (FTIR). J. Food Eng., 214: 166-174.
Horvat, M., G. Guthausen, P. Tepper, L. Falco and H.P. Schuchmann, 2014. Non-destructive, quantitative characterization of extruded starch-based products by magnetic resonance imaging and X-ray microtomography. J. Food Eng., 124: 122-127.
Liu, Z., B. Liu, M. Li, M. Wei, H. Li and T. Wan et al, 2013. Scanning probe acoustic microscopy of extruded starch materials: Direct visual evidence of starch crystal. Carbohydr. Polym., 98: 372-379.
Zhang, B., S. Dhital, B.M. Flanagan, P. Luckman, P.J. Halley and M.J. Gidley, 2015. Extrusion induced low-order starch matrices: Enzymic hydrolysis and structure. Carbohydr. Polym., 134: 485-496.
Moscicki, L, 2016. Extrusion cooking: Principles and practice. In: Encyclopedia of Food and Health, Caballero, B., P.M. Finglas and F. Toldrá, (Eds.). Elsevier, pp: 576-580.
Bhattacharya, S, 2017. Extrusion technology and glass transition. In: Non-Equilibrium States and Glass Transitions in Foods, Bhandari, B. and Y.H. Roos, (Eds.). Woodhead Publishing, pp: 137-152.
Yao, Y. and G. Ren, 2014. Suppressive effect of extruded adzuki beans (Vigna angularis) on hyperglycemia after sucrose loading in rats. Ind. Crops Prod., 52: 228-232.
Mäkilä, L., O. Laaksonen, J.M.R. Diaz, M. Vahvaselkä, O. Myllymäki and H. Kallio et al, 2014. Exploiting blackcurrant juice press residue in extruded snacks. LWT - Food Sci. Technol., 57: 618-627.
Altan, A., K.L. McCarthy and M. Maskan, 2008. Evaluation of snack foods from barley–tomato pomace blends by extrusion processing. J. Food Eng., 84: 231-242.
Peressini, D., M. Foschia, F. Tubaro and A. Sensidoni, 2015. Impact of soluble dietary fibre on the characteristics of extruded snacks. Food Hydrocolloids, 43: 73-81.
Chakraborty, P., A. Bhattacharya, D. Bhattacharyya, N.R.Bandyopadhyay and M. Ghosh, 2016. Studies of nutrient rich edible leaf blend and its incorporation in extruded food and pasta products. Mater. Today: Proc., 3: 3473-3483.
Stojceska, V., P. Ainsworth, A. Plunkett and S. İbanoğlu, 2009. The effect of extrusion cooking using different water feed rates on the quality of ready-to-eat snacks made from food by-products. Food Chem., 114: 226-232.
Mezreb, K., A. Goullieux, R. Ralainirina and M. Queneudec, 2003. Application of image analysis to measure screw speed influence on physical properties of corn and wheat extrudates. J. Food Eng., 57: 145-152.
Oliveira, L.C., N.M. Alencar and C.J. Steel, 2018. Improvement of sensorial and technological characteristics of extruded breakfast cereals enriched with whole grain wheat flour and jabuticaba (Myrciaria cauliflora) peel. LWT, 90: 207-214.
Robin, F., C. Dubois, N. Pineau, E. Labat, C. Théoduloz and D. Curti, 2012. Process, structure and texture of extruded whole wheat. J. Cereal Sci., 56: 358-366.
Singkhornart, S., S. Edou-ondo and G.-H. Ryu, 2014. Influence of germination and extrusion with CO2 injection on physicochemical properties of wheat extrudates. Food Chem., 143: 122-131.
Jafari, M., A. Koocheki and E. Milani, 2017. Effect of extrusion cooking of sorghum flour on rheology, morphology and heating rate of sorghum–wheat composite dough. J. Cereal Sci., 77: 49-57.
Pitts, K.F., J. Favaro, P. Austin and L. Day, 2014. Co-effect of salt and sugar on extrusion processing, rheology, structure and fracture mechanical properties of wheat–corn blend. J. Food Eng., 127: 58-66.
Miskelly, D, 2017. Optimisation of end-product quality for the consumer. In: Cereal Grains, Wrigley, C., I. Batey and D. Miskelly, (Eds.). Woodhead Publishing, pp: 653-688.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Oluchukwu Nwadi, Thomas Okonkwo

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.