Effect of Oil Palm Fronds and Setaria sp. as Forages Plus Sakura Block on the Performance and Nutrient Digestibility of Kaur Cattle
DOI:
https://doi.org/10.3923/pjn.2017.200.206Keywords:
Kaur cattle, oil palm fronds, performance, sakura block, Setaria grassAbstract
Objective: This study aimed to evaluate the effects of oil palm fronds as a substitute for Setaria sp., on dry matter and organic matter intake, weight gain and nutrient digestibility in Kaur cattle. Methodology: This study used a latin square design that consisted of 4 treatment groups with 4 replicates each. The 4 treatment groups were as follows: (1) Kaur cattle were fed 100% Setaria sp. + sakura block as the control (P0), (2) Kaur cattle were fed 25% oil palm fronds+75% Setaria sp. +sakura block (P1), (3) Kaur cattle were fed 50% oil palm fronds + 50% Setaria sp. + sakura block (P2) and (4) Kaur cattle were fed 75% oil palm fronds+25% Setaria sp. +sakura block. Results: Findings of the study showed that there were significant differences among the treatments (p<0.05) in all observed variables. Dry matter and organic matter intake and weight gains in P2 cattle were significantly higher (p<0.05) than the other treatments. Conclusion: It was concluded that the combination of 50% oil palm fronds and 50% Setaria grass plus sakura block resulted in the best performance of Kaur cattle.
References
BPS., 2016. Bengkulu province in figure 2016. Statistics of Bengkulu Province, Bengkulu, Indonesia.
Jamuji, B. Brata, U. Santoso and A. Saputra, 2013. The supplentation of sakura block for beef cattle in Kaur district. The Report of IPTEKDA, Jakarta, Indonesia.
Purwantari, N.D., B. Tiesnamurti and Y. Adinata, 2015. Availability of forage under oil palm plantation for cattle grazing. Wartazoa, 25: 47-54.
Umiyasih, U. and Y.N. Anggraeny, 2003. Integrated system of animal and plantation: A review of the forage availability for beef cattle in oil palm plantation area. Proceedings of the Seminar for Integrated Oil Palm-Beef Cattle System, (IOPBCS'03), Bogor, Indonesia, pp: 156-166.
Simanuhuruk, K., Junjungan and A. Tarigan, 2007. Utilization of oil palm fronds as basal feed for Kacang goats on growing phase. Proceedings of the National Animal Husbandry and Veterinary Seminar, August 21-22, 2007, Sungai Putih, Galang, Indonesia.
Chan, K.W., I. Watson and L.C. Kim, 1981. Use of oil-palm waste material for increased production. Proceedings of the Conference on Soil Science and Agricultural Development in Malaysia, May 12-14, 1980, Malaysian Soil Science Society, Kuala Lumpur, pp: 213-241.
Buharman, B., 2011. The use of feed technology of local based source to support the productivity of beef cattle in West Sumatra. Wartazoa, 21: 133-144.
Ginting, S.P., 2005. Synchrony of protein and energy in the rumen to maximize the production of microbial protein. Wartazoa, 15: 1-10.
Russelle, M.P., M.H. Entz and A.J. Franzluebbers, 2007. Reconsidering integrated crop-livestock systems in North America. Agron. J., 99: 325-334.
Devendra, C. and R.A. Leng, 2011. Feed resources for animals in Asia: Issues, strategies for use, intensification and integration for increased productivity. Asian-Australasian J. Anim. Sci., 24: 303-321.
Astuti, T., Y. Amir, Irdawati and U. Santoso, 2016. Nutritional improvement of palm oil fronds for Ruminant Feedstuffs Using a local biotechnological approach. Pak. J. Nutr., 15: 450-454.
Akbarillah, T. and Hidayat, 2009. Effect of heated palm oil frond in a palm kernel cake and palm oil processing-based diet on the performce of heifer. J. Indonesian Trop. Anim. Agric., 34: 28-35.
Santoso, U., I. Badarina and Warnoto, 2005. The effect of urea-multinutrient supplementation on the growth of Kacang goat. J. Indonesian Trop. Anim. Agric., 30: 157-161.
Zarah, A.L., I.D. Mohammed and F.I. Abbator, 2014. Rumen degradation characteristics of multinutrient blocks in semi-arid region of Nigeria. Anim. Prod., 16: 25-30.
Bheekhee, H., B. Hulman, A.A. Boodoo, R.K. Ramnauth, R.L.H. Yuen, R. Fakim and B. Dobee, 2002. Development and field evaluation of animal feed supplementation packages. Proceedings of the Final Review Meeting of an IAEA Technical Co-operation Regional AFRA, November 25-29, 2000, Venna, Austria, pp: 111-119.
AOAC., 2012. Official Methods of Analysis. 19th Edn., AOAC International, Gaithersburg, MD., USA.
Toutenburg, H. and H.T. Shalabh, 2009. Statistical Analysis of Designed Experiments. 3rd Edn., Springer Science, New York, USA., ISBN-13: 9781441911483, Pages: 615.
Orskov, E.R. and M.N.M. Ibrahim, 1991. Feed resources, livestock and livestock products with empha sis on crop-livestock farmers. Proceedings of the International Seminar, October 21-25, 1991, Brawijaya University, Malang, Indonesia.
Rolls, E.T., 2007. Understanding the mechanisms of food intake and obesity. Obesity Rev., 8: 67-72.
Wilson, J.R. and P.M. Kennedy, 1996. Plant and animal constraints to voluntary feed intake associated with fibre characteristics and particle breakdown and passage in ruminants. Crop Pasture Sci., 47: 199-225.
Aye, P.A. and M.K. Adegun, 2010. Digestibility and growth in West African dwarf sheep fed Gliricidia-based multinutrient block supplements. Agric. Biol. J. North Am., 1: 1133-1139.
McDonald, P., R.A. Edwards, J.F.D. Greenhalgh, C.A. Morgan, L.A. Sinclair and R.G. Wilkinson, 2010. Animal Nutrition. 7th Edn., Prentice Hall, Harlow, England.
Tanaka, K., B.S. Youn, U. Santoso, S. Ohtani and M. Sakaida, 1992. Effects of fermented products from chub mackerel extracts on growth and carcass composition, hepatic lipogenesis and on contents of various lipid fractions in the liver and the thigh muscle of broilers. Anim. Sci. Technol., 63: 32-37.
Santoso, U., Y. Fenita, Kususiyah and I.G.N.G. Bidura, 2015. Effect of fermented Sauropus androgynus leaves on meat composition, amino acid and fatty acid compositions in broiler chickens. Pak. J. Nutr., 14: 799-807.
Dahlan, I., 2000. Oil palm frond, a feed for herbivores. Asian-Aust. J. Anim. Sci., 13: 300-303.
Zahari, M.W., O. Abu Hassan, H.K. Wong and J.B. Liang, 2003. Utilization of oil palm frond-based diets for beef and dairy production in Malaysia. Asian-Australasian J. Anim. Sci., 16: 625-634.
Purba, A., I.W. Mathius, S.P. Ginting and F.R. Panjaitan, 2012. Pakan lengkap berbasis biomassa sawit: Penggemukan sapi lokal dan kambing kacang. Proceedings of the Seminar Insentif Riset SINas, November 29-30, 2012, Bandung, pp: 57-61.
Doyle, P.T., C. Devendra and G.R. Pearce, 1986. Rice straw as a feed for ruminants. International Development Program of Australian Universities and Colleges, Canberra, Australia.
Azmi and Gunawan, 2005. Utilization of oil palm waste for beef cattle feed. Prosiding Seminar Nasional Teknologi Peternakan dan Veteriner, September 12-13, 2005, Bogor.
Astuti, T., U. Santoso and Y. Amir, 2017. Nutritional value of fermented palm oil fronds as a basis for complete feed for ruminants. Pak. J. Nutr., 16: 96-100.
Islam, M., I. Dahlan, M.A. Rajion and Z.A. Jelan, 2000. Rumen pH and ammonia nitrogen of cattle fed different levels of oil palm (Elaeis guineensis) frond based diet and dry matter degradation of fractions of oil palm frond. Asian-Aust. J. Anim. Sci., 13: 941-947.
Nanda, D.D., A. Purnomoadi and L.K. Nuswantara, 2009. Production performance of Bali cattle fed with various levels of oil palm frond. Agromedia, 32: 54-63.
Suharyono, H. Sutanto, Y. Purwanti, Martanti, A. Agus and R. Utomo, 2014. The effect of urea molasses multi-nutrient and medicated block for beef cattle, beef and dairy cow. Atom Indonesia, 40: 77-87.
Santoso, U., S. Ohtani and K. Tanaka, 2000. Tu-Chung leaf meal supplementation reduced an increase in lipid accumulation of chickens stimulated by dietary cholesterol. Asian-Aust. J. Anim. Sci., 13: 1758-1763.
Santoso, U., J. Setianto and T. Suteky, 2005. Effect of Sauropus androgynus (Katuk) extract on egg production and lipid metabolism in layers. Asian-Aust. J. Anim. Sci., 18: 364-369.
Samad, A.P.A., U. Santoso, M.C. Lee and F.H. Nan, 2014. Effects of dietary katuk (Sauropus androgynus L. Merr.) on growth, non-specific immune and diseases resistance against Vibrio alginolyticus infection in grouper Epinephelus coioides. Fish Shellfish Immunol., 36: 582-589.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 The Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.