Soybean Sprouts Inhibit Bone Turnover in Ovariectomized Rats
DOI:
https://doi.org/10.3923/pjn.2017.666.671Keywords:
Bone turnover, ovariectomized rats, postmenopausal women, soybean, sproutsAbstract
Background and Objective: Soybeans are known for their positive influence on the prevention of osteoporosis in postmenopausal women. Soybean sprouts produce bioactive compounds that are better than soybeans. This study aimed to compare the potential of soybean sprouts with soybean and ethinylestradiol on the changes of biomarkers of bone turnover activity in ovariectomized rats (OVX). Materials and Methods: Twenty-five female Sprague-Dawley rats aged 2 months were placed into 5 groups: (i) normal control (without OVX) (N-C); (ii) OVX control (OVX-C); (iii) OVX+ethinylestradiol (30μg kg–1 b.wt.,/day, orally) (OVX-E); (iv) OVX+soybean flour (based on a dose 10μg g–1 b.wt.,/day of isoflavones, orally) (OVX-S); (v) OVX+soybean sprout flour (based on a dose 10μg g–1 b.wt.,/day of isoflavones, orally) (OVX-SS). All groups were treated for 6 weeks and all rats were fed an AIN-93M-based diet. Blood samples were collected before and after treatment for analysis of serum biomarkers of bone turnover and estradiol hormone. Data were analyzed using one-way ANOVA, followed by Duncan’s Multiple-Range (DMR) test. Results: The increase of osteocalcin (OC) and beta-crosslaps (βCTx) in the serum of the OVX-SS group was lower than in the OVX-S group and was the same as the OVX-E group. The OVX-C group experienced the highest increase in OC and βCTx. All groups of OVX rats also experienced a significant decline in estradiol hormone. There was no difference in the decrease in serum estradiol in the OVX-S and OVX-SS groups. Conclusion: The results of the study show that soybean sprout flour consumption provides better inhibition of bone turnover activity than soybeans in ovariectomized rats. The potential of soy and soybean sprouts in estradiol hormone recovery on ovariectomized rats is not different.
References
NOF., 2013. Clinician's guide to prevention and treatment of osteoporosis. National Osteoporosis Foundation, Washington, DC., pp: 1-53.
Dhanwal, D.K., C. Cooper and E.M. Dennison, 2010. Geographic variation in osteoporotic hip fracture incidence: The growing importance of Asian influences in coming decades. J. Osteoporosis.
Micosch, P., 2012. Osteoporosis: Pathophysiology and Clinical Aspects. In: Principles of Osteoimmunology Molecular Mechanisms and Clinical Applications, Pietschaman, P. (Ed.)., Springer, New York, pp: 137-162.
Nilsson, S. and J.A. Gustafsson, 2002. Biological role of estrogen and estrogen receptors. Crit. Rev. Biochem. Mol. Biol., 37: 1-28.
Biver, E., F. Chopin, G. Coiffier, T.F. Brentano, B. Bouvard, P. Garnero and B. Cortet, 2012. Bone turnover markers for osteoporotic status assessment? A systematic review of their diagnosis value at baseline in osteoporosis. Joint Bone Spine, 79: 20-25.
King, J., C.H. Wynne, L. Assersohn and A. Jones, 2011. Hormone replacement therapy and women with premature menopause: A cancer survivorship issue. Eur. J. Cancer, 47: 1623-1632.
Cui, Y., S. Deming-Halverson, A. Beeghly-Fadiel, L. Lipworth and M.J. Shrubsole et al., 2014. Interactions of hormone replacement therapy, body weight and bilateral oophorectomy in breast cancer risk. Clin. Cancer Res., 20: 1169-1178.
Borrelli, F. and E. Ernst, 2010. Alternative and complementary therapies for the menopause. Maturitas, 66: 333-343.
Wang, Q., X. Ge, X. Tian, Y. Zhang, J. Zhang and P. Zhang, 2013. Soy isoflavone: The multipurpose phytochemical. Biomed. Rep., 1: 697-701.
Wafay, H.A., M. Abdel-Moniem, H.A. Megahed and H. Elmalt, 2013. The effect of soy isoflavones and nondigestive oligosccharides on bone turnover markers. Int. J. Pharm. Pharm. Sci., 5: 152-156.
Park, Y., H.J. Moon, D.J. Paik and D.Y. Kim, 2013. Effect of dietary legumes on bone-specific gene expression in ovariectomized rats. Nutr. Res. Pract., 7: 185-191.
Alekel, D.L., M.D. van Loan, K.J. Koehler, L.N. Hanson and J.W. Stewart et al., 2010. The soy isoflavones for reducing bone loss (SIRBL) study: A 3-y randomized controlled trial in postmenopausal women. Am. J. Clin. Nutr., 91: 218-230.
Oseni, O.A., A.U. Ibeto and M.O. Aruna, 2011. Effects of dehusking on the composition of phytochemicals nutrients, antinutrients, minerals and in-vitro multi enzyme digestibility of the seed of Brazilian Jack beans (Canavalia braziliensis). Int. Res. J. Biotechnol., 2: 192-197.
Afiukwa, C.A., O. Onwuchekwa, U.A. Ibiam, C.O. Edeogu and P.M. Aja, 2012. Characterization of cowpea cultivars for variations in seed contents of some Antinutritional Factors (ANFs). Cont. J. Food Sci. Technol., 6: 25-34.
Mugendi, J.B., E.N.M. Njag, E.N. Kuria, M.A. Mwasaru, J.G. Mureithi and Z. Apostolides, 2010. Effects of processing techniques on the nutritional composition and anti-nutrient content of mucuna bean (Mucuna pruriens L.). Afr. J. Food Sci., 4: 156-166.
Li, L., B. Liu and X. Zheng, 2011. Bioactive ingredients in adzuki bean sprouts. J. Med. Plants Res., 5: 5894-5898.
Rusydi, M.R.M. and A. Azrina, 2012. Effect of germination on total phenolic, tannin and phytic acid contents in soy bean and peanut. Int. Food Res. J., 19: 673-677.
Hartiningsih, D. Anggraini and D. Aji, 2012. Respon metafisis tulang femur distalis tikus ovariektomi yang mengkonsumsi kalsitriol. J. Kedokteran Hewan, 6: 92-97.
Philip, G.R, H.N. Forrest and C.F. George Jr., 1993. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet. J. Nutr., 123: 1939-1951.
Lelovas, P.P., T.T. Xanthos, S.E. Thoma, G.P. Lyritis and I.A. Dontas, 2008. The laboratory rat as an animal model for osteoporosis research. Comp. Med., 58: 424-430.
Hoegh-Andersen, P., L.B. Tanko, T.L. Andersen, C.V. Lundberg and J.A. Mo et al., 2004. Ovariectomized rats as a model of postmenopausal osteoarthritis: Validation and application. Arthritis Res. Ther., Vol. 6.
Lim, D.W. and Y.T. Kim, 2014. Anti-osteoporotic effects of Angelica sinensis (Oliv.) Diels extract on ovariectomized rats and its oral toxicity in rats. Nutrients, 6: 4362-4372.
Hertrampf, T., B. Schleipen, C. Offermanns, M. Velders, U. Laudenbach and P. Diel, 2009. Comparison of the bone protective effects of an isoflavone-rich diet with dietary and subcutaneous administrations of genistein in ovariectomized rats. Toxicol. Lett., 184: 198-203.
Lim, D.W., J.G. Kim and Y.T. Kim, 2013. Effects of dietary isoflavones from Puerariae radix on lipid and bone metabolism in ovariectomized rats. Nutirents, 5: 2734-2746.
Miao, Q., J.G. Li, S. Miao, N. Hu and J. Zhang et al., 2011. The bone-protective effect of genistein in the animal model of bilateral ovariectomy: Roles of phytoestrogens and PTH/PTHR1 against post-menopausal osteoporosis. Int. J. Mol. Sci., 13: 56-70.
Lerner, U.H., 2006. Bone remodeling in post-menopausal osteoporosis. J. Dent. Res., 85: 584-595.
Lee, Y.S., X. Chen and J.J.B. Anderson, 2001. Physiological concentrations of genistein stimulate the proliferation and protect against free radical-induced oxidative damage of MC3T3-E1 osteoblast-like cells. Nutr. Res., 21: 1287-1298.
Chen, X.W., S.C. Garner and J.J.B. Anderson, 2002. Isoflavones regulate interleukin-6 and osteoprotegerin synthesis during osteoblast cell differentiation via an estrogen-receptor-dependent pathway. Biochem. Biophys. Res. Commun., 295: 417-422.
Chiang, S.S. and T.M. Pan, 2013. Beneficial effects of phytoestrogens and their metabolites produced by intestinal microflora on bone health. Applied Microbiol. Biotechnol., 97: 1489-1500.
Byun, J.S. and S.S. Lee, 2010. Effect of soybeans and sword beans on bone metabolism in a rat model of osteoporosis. Ann. Nutr. Metab., 56: 106-112.
Picherit, C., C. Bennetau-Pelissero, B. Chanteranne, P. Lebecque, M.J. Davicco, J.P. Barlet and V. Coxam, 2001. Soybean isoflavones dose-dependently reduce bone turnover but do not reverse established osteopenia in adult ovariectomized rats. J. Nutr., 131: 723-728.
Jeon, B.J., J. Ahn and H.S. Kwak, 2009. Effect of Isoflavone-enriched milk on bone mass in ovariectomized rats. J. Med. Food, 12: 1260-1267.
Muthusami, S., I. Ramachandra, B. Muthusamy, G. Vasudevan and V. Prabhu et al., 2005. Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats. Clin. Chim. Acta, 360: 81-86.
Arslan, A., S. Orkun, G. Aydin, I. Keles, A. Tosun, M. Arslan and O. Caglayan, 2011. Effects of ovariectomy and ascorbic acid supplement on oxidative stress parameters and bone mineral density in rats. Libyan J. Med.
Norazlina, M., H. Hermizi, O. Faizah, A.N. Shuid, M. Norliza and S. Ima-Nirwana, 2010. Vitamin E reversed nicotine-induced toxic effects on bone biochemical markers in male rats. Arch. Med. Sci., 6: 505-512.
Setiawan, D.I., K. Tjahyono and D.N. Afifah, 2016. Pemberian kecambah kacang kedelai terhadap kadar malondialdehid (MDA) dan superoxide dismutase (SOD) tikus Sprague Dawley hiperkolesterolemia. J. Gizi Klinik Indonesia, 13: 20-26.
Price, S.A. and L.M. Wilson, 1994. Patofisiologi: Konsep Klinis Proses-Proses Penyakit. 4th Edn., Chapter 64, Buku Kedokteran EGC., Jakarta, pp: 1125-1157.
Hong, G.E., P.K. Mandal, C.W. Pyun, K. Choi and S.K. Kim et al., 2009. Isoflavone aglycone from fermented soy pulp prevents osteoporosis in ovariectomized rats. Asian J. Anim. Vet. Adv., 4: 288-296.
Modder, U.I., B.L. Riggs, T.C. Spelsberg, D.G. Fraser, E.J. Atkinson, R. Arnold and S. Khosla, 2004. Dose-response of estrogen on bone versus the uterus in ovariectomized mice. Eur. J. Endocrinol., 151: 503-510.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 The Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.