Characterisation of Phytochemicals in Raw and Processed Monodora myristica (Gaertn.) Dunal Seeds by UPLC-MS


Authors

  • Anna N. Agiriga Department of Food Science and Technology, Federal University Oye-Ekiti, Ekiti State, Nigeria
  • Muthulisi Siwela Department of Food Science and Technology, Federal University Oye-Ekiti, Ekiti State, Nigeria

DOI:

https://doi.org/10.3923/pjn.2018.344.354

Keywords:

Monodora myristica, phytochemicals, spice, thermal processing, UPLC-MS

Abstract

Background and Objective: Monodora myristica (M. myristica) seeds are processed locally using various indigenous knowledge systems (IKS) based processing techniques like boiling, roasting and frying for varying lengths of time. It is important to determine the effect of these processing methods on its phytochemical constituents, a step necessary in order to explain its nutritional/medicinal use. This paper determined the effects of different cooking methods (boiling and roasting) and cooking times (10, 20 and 30 min) on the phytochemical constituents of M. myristica seeds using ultra performance liquid chromatograph-mass spectrometer (UPLC-MS). Materials and Methods: M. myristica seeds were thermally processed through boiling and roasting for varying lengths of time. Metabolite profiling using UPLC-MS was utilized to identify phytochemicals in raw and processed seeds. Metabolites were characterized by their UV-vis spectra, retention times relative to external standards, mass spectra and comparison to in-house database, phytochemical dictionary of natural products database and reference literature. Results: A total of 32 metabolites were identified, including terpenoids, sterols, alkaloids, fatty acids, saponins, flavonoids, glycosides and coumarins. Processing induced changes in phytochemical composition, more phytochemicals were identified in the roasted samples and the raw (control) sample had the least (four) number of phytochemicals. Conclusion: These findings are promising as they indicate that suitable processing techniques could be established and then applied in the development of new functional foods from whole M. myristica seeds or its extracts. M. myristica seed can be considered a good source of phytochemicals.

References

Burubai, W., E. Amula, P. Daworiye, T. Suowari and P. Nimame, 2009. Proximate composition and some technological properties of African nutmeg (Monodora myristica) seeds. Electron. J. Environ. Agric. Food Chem., 8: 396-402.

Ojiako, O.A., C.U. Igwe, N.C. Agha, C.A. Ogbuji and V.A. Onwuliri, 2010. Protein and amino acid compositions of Sphenostylis stenocarpa, Sesamum indicum, Monodora myristica and Afzelia africana seeds from Nigeria. Pak. J. Nutr., 9: 368-372.

Owokotomo, I.A. and O. Ekundayo, 2012. Comparative study of the essential oils of Monodora myristica from Nigeria. Eur. Chem. Bull., 1: 263-265.

Feyisayo, A.K. and O.O. Oluokun, 2013. Evaluation of antioxidant potentials of Monodora myristica (Gaertn.) dunel seeds. Afr. J. Food Sci., 7: 317-324.

Enabulele, S.A., F.O.J. Oboh and E.O. Uwadiae, 2014. Antimicrobial, nutritional and phytochemical properties of Monodora myristica seeds. IOSR J. Pharm. Biol. Sci., 9: 1-6.

Bouba, A.A., R. Ponka, G. Augustin, N.N. Yanou and M.A.H. El-Sayed et al., 2016. Amino acid and fatty acid profile of twenty wild plants used as spices in Cameroon. Am. J. Food Sci. Technol., 4: 29-37.

Onyenibe, N.S., K.T. Fowokemi and O.B. Emmanuel, 2015. African Nutmeg (Monodora myristica) lowers cholesterol and modulates lipid peroxidation in experimentally induced hypercholesterolemic male Wistar rats. Int. J. Biomed. Sci., 11: 86-92.

Weiss, E.A., 2002. Spice Crops. CABI Publishing, Oxon, UK., ISBN-13: 9780851996059, pp: 102-103.

Okwu, D.E. and C. Ibeawuchi, 2005. Nutritive value of Mondora myristica and Xylopra aethiopica as additives in traditional food stuffs. J. Med. Arom. Plant Sci., 27: 275-279.

Udeala, O.K., 2000. Preliminary evaluation of dike fat, a new tablet lubricant. J. Pharm. Pharmacol., 32: 6-9.

Iwu, M.M., 2002. Evaluation of the antihepatotoxic activity of the biflavonoids of Garciana kola seeds. J. Ethnopham., 21: 14-19.

Ndidi, U.S., C.U. Ndidi, I.A. Aimola, O.Y. Bassa, M. Mankilik and Z. Adamu, 2014. Effects of processing (boiling and roasting) on the nutritional and antinutritional properties of bambara groundnuts (Vigna subterranea [L.] Verdc.) from Southern Kaduna, Nigeria. J. Food Process., Vol. 2014.

Feyisayo, A. and O.O. Oluokun, 2014. Comparative analysis of phenolic profile of Monodora myristica and Monodora tenuifolia. Afr. J. Agric. Res., 9: 1296-1302.

Ekeanyanwu, C.R., I.G. Ogu and U.P. Nwachukwu, 2010. Biochemical characteristics of the African Nutmeg-Monodora myristica. Agric. J., 5: 303-308.

Iwu, M.M., 1993. Handbook of African Medicinal Plants. 1st Edn., CRC Press, Boca Raton, FL., pp: 205-210.

Chau, C.F., P.C. Cheung and Y.S. Wong, 1997. Effects of cooking on content of amino acids and antinutrients in three Chinese indigenous legume seeds. J. Sci. Food Agric., 75: 447-452.

Liu, R., J. Sun, K. Bi and D.A. Guo, 2005. Identification and determination of major flavonoids in rat serum by HPLC-UV and HPLC-MS methods following oral administration of Dalbergia odorifera extract. J. Chromatogr. B, 829: 35-44.

Proestos, C., D. Sereli and M. Komaitis, 2006. Determination of phenolic compounds in aromatic plants by RP-HPLC and GC-MS. Food Chem., 95: 44-52.

Mbah, B.O., P.E. Eme and O.F. Ogbusu, 2012. Effect of cooking methods (boiling and roasting) on nutrients and anti-nutrients content of Moringa oleifera seeds. Pak. J. Nutr., 11: 211-215.

Yang, L. and J. Stockigt, 2010. Trends for diverse production strategies of plant medicinal alkaloids. Nat. Prod. Rep., 27: 1469-1479.

Ugwu, F.M. and N.A. Oranye, 2006. Effects of some processing methods on the toxic components of African breadfruit (Treculia africana). Afr. J. Biotechnol., 5: 2329-2333.

Fereidoon, S., 2014. Beneficial health effects and drawbacks of antinutrients and phytochemicals in foods. Applied Microbiol. Biotechnol., 97: 45-55.

Kitajima, M., A. Urano, N. Kogure, H. Takayama and N. Aimi, 2003. New oxindole alkaloids and iridoid from Carolina jasmine (Gelsemium sempervirens AIT. f.). Chem. Pharm. Bull., 51: 1211-1214.

Chen, J.J., Y.L. Chang, C.M. Teng, C.C. Su and I.S. Chen, 2002. Quinoline alkaloids and anti-platelet aggregation constituents from the leaves of Melicope semecarpifolia. Planta Medica, 68: 790-793.

Gemede, H.F. and N. Ratta, 2014. Antinutritional factors in plant foods: Potential health benefits and adverse effects. Int. J. Nutr. Food Sci., 3: 284-289.

Aremu, M.O., O. Olaofe, S.K. Basu, G. Abdulazeez and S.N. Acharya, 2010. Processed cranberry bean (Phaseolus coccineus L.) seed flour for the African diet. Can. J. Plant Sci., 90: 719-728.

Gurfinkel, D.M. and A.V. Rao, 2002. Determination of saponins in legumes by direct densitometry. J. Agric. Food Chem., 50: 426-430.

Daniel, C.N. and E.A.C. Cemaluk, 2011. Effect of boiling and roasting on some anti-nutrient factors of asparagus bean (Vigna sesquipedalis) flour. Afr. J. Food Sci. Technol., 2: 75-78.

Kwon, Y., S.H. Kim, Y. Shin, M. Bae and B.Y. Kim et al., 2014. A new benzofuran glycoside and indole alkaloids from a sponge-associated rare actinomycete, Amycolatopsis sp. Mar. Drugs, 12: 2326-2340.

Matsushige, A., Y. Kotake, K. Matsunami, H. Otsuka, S. Ohta and Y. Takeda, 2012. Annonamine, a new aporphine alkaloid from the leaves of Annona muricata. Chem. Pharm. Bull., 60: 257-259.

Ogbadoyi, E.O., H.A. Makun, R.O. Bamigbade, A.O. Oyewale and J.A. Oladiran, 2006. The effect of processing and preservation methods on the oxalate levels of some Nigerian leafy vegetables. Biokemistri, 18: 121-125.

Inyang, U.E., E.O. Akpan and F.A. Bello, 2015. Effect of boiling and roasting on the nutrient and anti-nutrient. Int. J. Inform. Res. Rev., 2: 769-772.

De la Parra, C., S.O. Serna Saldivar and R.H. Liu, 2007. Effect of processing on the phytochemical profiles and antioxidant activity of corn for production of masa, tortillas and tortilla chips. J. Agric. Food Chem., 55: 4177-4183.

Wu, L., Z. Huang, P. Qin and G. Ren, 2012. Effects of processing on phytochemical profiles and biological activities for production of sorghum tea. Food Res. Int., 53: 678-685.

Quirantesâ€Pine, R., D. Arraezâ€Roman, A. Seguraâ€Carretero and A. Fernandezâ€Gutierrez, 2010. Characterization of phenolic and other polar compounds in a lemon verbena extract by capillary electrophoresisâ€electrospray ionizationâ€mass spectrometry. J. Separat. Sci., 33: 2818-2827.

Takeda, T., Y. Narukawa and N. Hada, 1999. Studies on the constituents of Leonotis nepetaefolia. Chem. Pharm. Bull., 47: 284-286.

Sinaphet, B., P. Noiarsa, S. Rujirawat, H. Otsuka and T. Kanchanapoom, 2006. Dolichandroside, a new phenolic triglycoside from Dolichandrone serrulata (DC.) Seem. J. Natural Med., 60: 251-254.

Di, L., N. Li, L.B. Zu, K.J. Wang, Y.X. Zhao and Z. Wang, 2011. Three new iridoid glucosides from the roots of Patrinia scabra. Bull. Korean Chem. Soc., 32: 3251-3254.

Akkol, EK., I.I. Tatli and Z.S. Akdemir, 2007. Antinociceptive and anti-inflammatory effects of saponin and iridoid glucosides from Verbascum pterocalycinum var. mutense Hub.-Mor. Z. Naturforsch. C., 62: 813-820.

Aboaba, O.O., A.R. Ezeh and C.L. Anabuike, 2011. Antimicrobial activities of some Nigerian spices on some pathogens. Agric. Biol. J. N. Am., 2: 1187-1193.

Ogu, G.I., R.C. Ekeanyanwu, E.C. Madagwu, O.J. Eboh and J. Okoye, 2011. In vitro antimicrobial evaluation of African nutmeg (Monodora myristica) seeds. Int. J. Trop. Agric. Food Syst., 5: 55-60.

Dada, A.A., Ifesan, B.O.T. and J.T. Fashakin, 2013. Antimicrobial and antioxidant properties of selected local spices used in "kunun" beverage in Nigeria. Acta Sci. Pol. Technol. Aliment., 12: 373-378.

Miketova, P., K.H. Schram, J. Whitney, M. Li and R. Huang et al., 2000. Tandem mass spectrometry studies of green tea catechins. Identification of three minor components in the polyphenolic extract of green tea. J. Mass Spectromet., 35: 860-869.

Afshar, F.H., F. Maggi, S. Ferrari, G. Peron and S. Dall'Acqua, 2015. Secondary metabolites of Alchemilla persica growing in Iran (East Azarbaijan). Natural Prod. Commun., 10: 1705-1708.

Akinwunmi, K.F. and O.O. Oyedapo, 2015. In vitro anti-inflammatory evaluation of african nutmeg (Monodora myristica) seeds. Eur. J. Medi. Plants 8: 167-174.

Erukainure, O.L., O.V. Oke, F.O. Owolabi, F.O. Kayode, E.E. Umanhonlen and M. Aliyu, 2012. Chemical properties of Monodora myristica and its protective potentials against free radicals in vitro. Oxidants Antioxid. Med. Sci., 1: 127-132.

Zhang, Q., A. Mandi, S. Li, Y. Chen and W. Zhang et al., 2012. coupled indoloâ€sesquiterpene atropoâ€diastereomers from a marineâ€derived actinomycete. Eur. J. Organ. Chem., 2012: 5256-5262.

Yoo, H.D., P.A. Cremin, L. Zeng, E. Garo and C.T. Williams et al., 2005. Suaveolindole, a new mass-limited antibacterial indolosesquiterpene from Greenwayodendron uaveolens obtained via high-throughput natural products chemistry methods. J. Natural Prod., 68: 122-124.

Ngantchou, I., B. Nyasse, C. Denier, C. Blonski, V. Hannaert and B. Schneider, 2010. Antitrypanosomal alkaloids from Polyalthia suaveolens (Annonaceae): Their effects on three selected glycolytic enzymes of Trypanosoma brucei. Bioorg. Med. Chem. Lett., 20: 3495-3498.

Kouam, S.F., A.W. Ngouonpe, M. Lamshoft, F.M. Talontsi and J.O. Bauer et al., 2014. Indolosesquiterpene alkaloids from the Cameroonian medicinal plant Polyalthia oliveri (Annonaceae). Phytochemistry, 105: 52-59.

Okwu, D.E. and F.N.I. Morah, 2001. Isolation and characterization of flavanone glycoside 4, 5, 7-trihydroxyl flavonone rhamanoglucose from Garcinia kola seed. J. Applied Sci., 7: 306-309.

Weber, D., O. Sterner and T. Anke, 2007. Mollisianitrile, a new antibiotic from Mollisia sp. A59-96. Zeitschrift Naturforschung C, 62: 567-570.

Uchiyama, T., T. Miyase, A. Ueno and K. Usmanghani, 1991. Terpene and lignan glycosides from Pluchea indica. Phytochemistry, 30: 655-657.

He, Y., J. Peng, M.T. Hamann and L.M. West, 2014. An iridoid glucoside and the related aglycones from Cornus florida. J. Natural Prod., 77: 2138-2143.

Ishiguro, K., M. Yamaki, S. Takagi, Y. Ikeda, K. Kawakami, K. Ito and T. Nose, 1986. Studies on iridoid-related compounds. IV.: Antitumor activity of iridoid aglycones. Chem. Pharm. Bull., 34: 2375-23779.

Ukaegbu-Obi, K.M., M.O. Meribe and C.E. Odo, 2015. Assessment of antimicrobial activity of aqueous and ethanolic extracts of Monodora myristica (Ehuru) seeds. Mint. J. Pharm. Med. Sci., 4: 1-2.

Rouger, C., S. Derbre, B. Charreau, A. Pabois and T. Cauchy et al., 2015. Lepidotol A from Mesua lepidota inhibits inflammatory and immune mediators in human endothelial cells. J. Natural Prod., 78: 2187-2197.

Farag, M.A., H.A. Gad, A.G. Heiss and L.A. Wessjohann, 2014. Metabolomics driven analysis of six Nigella species seeds via UPLC-qTOF-MS and GC-MS coupled to chemometrics. Food Chem., 151: 333-342.

Kim, S.G., F. Yon, E. Gaquerel, J. Gulati and I.T. Baldwin, 2011. Tissue specific diurnal rhythms of metabolites and their regulation during herbivore attack in a native tobacco, Nicotiana attenuate. PLoS One, Vol. 6.

Cai, X.H., Y. Li, Y.P. Liu, X.N. Li, M.F. Bao and X.D. Luo, 2012. Alkaloids from Melodinus yunnanensis. Phytochemistry, 83: 116-124.

Kumar, S., V. Bajpai, A. Singh, S. Bindu, M. Srivastava, K.B. Rameshkumar and B. Kumar, 2015. Rapid fingerprinting of Rauwolfia species using direct analysis in real time mass spectrometry combined with principal component analysis for their discrimination. Anal. Meth., 7: 6021-6026.

Reyes, F., R. Martin and R. Fernandez, 2006. Granulatamides A and B, cytotoxic tryptamine derivatives from the soft coral Eunicella granulata. J. Natural Prod., 69: 668-670.

Netz, N. and T. Opatz, 2015. Marine indole alkaloids. Mar. Drugs, 13: 4814-4914.

Huang, J.W. and W.C. Chung, 2003. Management of vegetable crop diseases with plant extracts. Adv. Plant Dis. Manage., 37: 153-163.

Okwu, D.E., A.N. Awurum and J.I. Okoronkwo, 2007. Phytochemical composition and in vitro antifungal activity screening of extracts from citrus plants against Fusarium oxysporum of okra plant (Hibiscus esculentus). Pest Technol., 1: 145-148.

Schmidt, E.M., I.B.S. Cunha, M.N. Eberlin and A.C.H.F. Sawaya, 2015. Characterization of Royal Jelly by electrospray ionization mass spectrometry fingerprinting. Mass Spect. Purif Tech., Vol. 1.

Farag, M.A., S.H. El-Ahmady, F.S. Elian and L.A. Wessjohann, 2013. Metabolomics driven analysis of artichoke leaf and its commercial products via UHPLC-q-TOF-MS and chemometrics. Phytochemistry, 95: 177-187.

Van Boekel, M.A.J.S., 2001. Kinetic aspects of the Maillard reaction: A critical review. Food/Nahrung, 45: 150-159.

Lopez, D.H., M.L. Martin, M.A. Noguera-Salva, S. Teres, G.B. Coblijn, P.V. Escriba and X. Busquets, 2010. A new family of 2-hydroxy fatty acids as a new class of non-steroid anti-inflammatory drugs. Chem. Phys. Lipids, Vol. 163.

Edewor, T.I. and N.O. Kazeem, 2016. Gas chromatography-Mass spectrometric analysis of the chemical constituents from chloroform fraction of Monodora myristica methanol seed extract. Cibtech. J. Bio-Protocols, 5: 15-21.

Schliemann, W., Y. Cai, T. Degenkolb, J. Schmidt and H. Corke, 2001. Betalains of Celosia argentea. Phytochemistry, 58: 159-165.

Clifford, T., G. Howatson, D.J. West and E.J. Stevenson, 2015. The potential benefits of red beetroot supplementation in health and disease. Nutrients, 7: 2801-2822.

Ishola, I.O., V.O. Ikumawoyi, G.O. Afolayan and O.J. Olorife, 2016. Antinociceptive and anti-inflammatory properties of hydroethanolic seed extract of Monodora myristica (Annonaceae) in rodents. West Afr. J. Pharm., 27: 22-32.

Farag, M.A., A. Porzel and L.A. Wessjohann, 2012. Comparative metabolite profiling and fingerprinting of medicinal licorice roots using a multiplex approach of GC-MS, LC-MS and 1D NMR techniques. Phytochemistry, 76: 60-72.

Liu, X.T., Z.Z. Wang, W. Xiao, H.W. Zhao, J. Hu and B. Yu, 2008. Cholestane and spirostane glycosides from the rhizomes of Dioscorea septemloba. Phytochemistry, 69: 1411-1418.

Ortiz-Lopez, F.J., M.C. Monteiro, V. Gonzalez-Menendez, J.R. Tormo and O. Genilloud et al., 2015. Cyclic colisporifungin and linear cavinafungins, antifungal lipopeptides isolated from Colispora cavincola. J. Natural Prod., 78: 468-475.

Mahesh, B. and S. Satish, 2008. Antimicrobial activity of some important medicinal plant against plant and human pathogens. World J. Agric. Sci., 4: 839-843.

Okpekon, T., S. Yolou, C. Gleye, F. Roblot and P. Loiseau et al., 2004. Antiparasitic activities of medicinal plants used in Ivory Coast. J. Ethnopharmacol., 90: 91-97.

Kuo, Y.H., B.H. Chang and Y.T. Lin, 1975. Studies on the extractive constituents of the bark of Libocedrus formosana florin. I. The structure of 6αâ€hydroxyâ€7â€0X0â€ferruginol. J. Chinese Chem. Soc., 22: 49-52.

Jang, K.H., J.E. Jeon, S. Ryu, H.S. Lee, K.B. Oh and J. Shin, 2008. Polyoxygenated diterpenes from the sponge Phorbas sp. J. Natural Prod., 7: 1701-1707.

Rho, J.R., H.S. Lee, C.J. Sim and J. Shin, 2002. Gagunins, highly oxygenated diterpenoids from the sponge Phorbas sp. Tetrahedron, 58: 9585-9591.

Motti, C.A., P. Ettinger-Epstein, R.H. Willis and D.M. Tapiolas, 2010. ESI FTICR-MS analysis of larvae from the marine sponge Luffariella variabilis. Mar. Drugs, 8: 190-199.

Tang, Y., 2016. Comparative study on the morphology, chemistry, metabolism and anti-myocardial ischemia activity of three medicinal species of dioscorea. Ph.D. Thesis, School of Chinese Medicine, Hong Kong Baptist University.

Jacobson, P.B., L.A. Marshall and R.S. Jacobs, 1990. Inactivation of human synovial fluid phospholipase A2 by the marine natural product, manoalide. Biochem. Pharmacol., 39: 1557-1564.

Glaser, K.B. and R.S. Jacobs, 1987. Inactivation of bee venom phospholipase A2 by monoalide: A model based on the reactivity of monoalide with amino acids and peptide sequences. Biochem. Pharmacol., 36: 2079-2086.

Lombardo, D. and E.A. Dennis, 1985. Cobra venom phospholipase A2 inhibition by manoalide. A novel type of phospholipase inhibitor. J. Biol. Chem., 260: 7234-7240.

Lin, X., S. Ji, X. Qiao, H. Hu and N. Chen et al., 2013. Density functional theory calculations in stereochemical determination of terpecurcumins J-W, cytotoxic terpene-conjugated curcuminoids from Curcuma longa L. J. Organ. Chem., 78: 11835-11848.

Abdelmohsen, U.R., C. Cheng, A. Reimer, V. Kozjak-Pavlovic and A.K. Ibrahim et al., 2015. Antichlamydial sterol from the Red sea sponge. Planta Med., 81: 382-387.

Bakarnga-Via, I., J.B. Hzounda, P.V.T. Fokou, L.R.Y. Tchokouaha and M. Gary-Bobo et al., 2014. Composition and cytotoxic activity of essential oils from Xylopia aethiopica (Dunal) A. Rich, Xylopia parviflora (A. Rich) Benth.) and Monodora myristica (Gaertn) growing in Chad and Cameroon. BMC Complement. Altern. Med., Vol. 14.

Chao, C.H., L.F. Huang, Y.L. Yang, J.H. Su and G.H. Wang et al., 2005. Polyoxygenated steroids from the gorgonian Isis hippuris. J. Natural Prod., 68: 880-885.

Sheu, J.H., S.P. Chen, P.J. Sung, M.Y. Chiang and C.F. Dai, 2000. Hippuristerone A, a novel polyoxygenated steroid from the gorgonian Isis hippuris. Tetrahedron Lett., 41: 7885-7888.

Kobayashi, J.I., T. Kubota, T. Endo and M. Tsuda, 2001. Amphidinolides T2, T3 and T4, new 19-membered macrolides from the dinoflagellate Amphidinium sp. and the biosynthesis of amphidinolide T1. J. Organ. Chem., 66: 134-142.

Maleczka, R.E., L.R. Terrell, F. Geng and J.S. Ward, 2002. Total synthesis of proposed amphidinolide A via a highly selective ring-closing metathesis. Organ. Lett., 4: 2841-2844.

Downloads

Published

15.06.2018

Issue

Section

Research Article

How to Cite

Agiriga, A. N., & Siwela, M. (2018). Characterisation of Phytochemicals in Raw and Processed Monodora myristica (Gaertn.) Dunal Seeds by UPLC-MS. Pakistan Journal of Nutrition, 17(7), 344–354. https://doi.org/10.3923/pjn.2018.344.354