Glutathione Supplementation Reduces MMP-9 Levels and Infarct Area in Rats Models of Acute Ischemic Stroke

Authors

  • Churriyyatul Anam Department of Nutrition, Faculty of Medicine, Diponegoro University, Semarang City, Indonesia
  • Retnaningsih Department of Neurology, Faculty of Medicine, Diponegoro University, Semarang City, Indonesia
  • Nyoman Suci Department of Clinical Pathology, Faculty of Medicine, Diponegoro University, Semarang City, Indonesia

DOI:

https://doi.org/10.3923/pjn.2018.535.541

Keywords:

Aspirin, Glutathione (GSH), infarction, ischemic stroke, matrix metalloproteinase-9 (MMP-9)

Abstract

Background and Objective: Ischemic stroke occurs when blood vessels vascularizing the brain are blocked and unable to receive oxygen or glucose. Matrix metalloproteinases (MMPs) have been implicated in the pathophysiology of stroke. MMP-9 is known as an early marker related to incidence of stroke. While standard therapy for stroke is unable to repair damaged brain tissues, glutathione (GSH) inhibits oxidative stress activity and reduces excess MMP-9 levels in order to avoid pathological angiogenesis in ischemic stroke. This study was conducted to demonstrate the effect of GSH on MMP-9 levels and infarcted areas after acute ischemic stroke compared with standard therapy. Methods: This experimental study used a post-test only control group design. Twenty male Wistar rats were equally divided into 4 groups and orally treated with placebo, 0.72 mg aspirin/100 g body weight, 21.6 mg GSH/100 g body weight or GSH+aspirin for 7 day following induction of ischemic stroke by unilateral cerebral artery occlusion. Serum MMP-9 levels were measured by ELISA and infarct size (area) was measured by cresyl violet staining. Results: Both MMP-9 levels and infarct area were significantly reduced (p<0.05) in all treatment groups versus control group (placebo). GSH+aspirin therapy showed the greatest reductions. Conclusion: Combining GSH and aspirin significantly decreased MMP-9 levels and infarct area after acute ischemic stroke compared to standard therapy alone.

References

WHO., 2011. Ischemic and hemorrhagic stroke. The International Agenda for Stroke, pp: 28-29.

DHRD., 2013. Basic health research (RISKESDAS) 2013. Department for Health Research and Development (DHRD), National Report 2013, pp: 1-384.

INSDA., 2011. Stroke's guideline. Indonesian Nerve Specialist Doctors Association (INSDA), Jakarta, pp: 49-50.

Rosell, A., A. Ortega-Aznar, J. Alvarez-Sabin, I. Fernandez-Cadenas and M. Ribo et al., 2006. Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke, 37: 1399-1406.

Krafft, P.R., E.L. Bailey, T. Lekic, W.B. Rolland and O. Altay et al., 2012. Etiology of stroke and choice of models. Int. J. Stroke, 7: 398-406.

Hossmann, K.A. and W.D. Heiss, 2014. Etiology, Pathophysiology and Imaging. Neuropathology and Pathophysiology of Stroke. In: Textbook of Stroke Medicine, 2nd Edn., Brainin, M. and W.D. Heiss (Eds.)., Cambridge University Press, UK., pp: 1-27.

Price, S.A. and L.M. Wilson, 2006. Pathophysiology: Clinical Concept of Disease Processes. 6th Edn., Mosby, USA., ISBN: 9780323014557, Pages: 1183.

Ringleb, P.A., M.G. Bousser, G. Ford, P. Bath and M. Brainin et al., 2008. Guidelines for management of ischaemic stroke and transient ischaemic attack 2008. Cerebrovasc Dis., 25: 457-507.

Zhao, L., M. Arbel-Ornath, X. Wang, R.A. Betensky, S.M. Greenberg, M.P. Frosch and B.J. Bacskai, 2015. Matrix metalloproteinase 9-mediated intracerebral hemorrhage induced by cerebral amyloid angiopathy. Neurobiol. Aging, 36: 2963-2971.

Rottenberger, Z. and K. Kolev, 2011. Matrix metalloproteinases at key junctions in the pathomechanism of stroke. Open Life Sci., 6: 471-485.

Garvin, P., L. Nilsson, J. Carstensen, L. Jonasson and M. Kristenson, 2008. Circulating matrix metalloproteinase-9 is associated with cardiovascular risk factors in a middle-aged normal population. PLoS One, Vol. 3.

Nylen, K., 2007. Studies of biochemical brain damage markers in patients at a neurointensive care unit. Ph.D. Thesis, University of Gothenburg, Sweden.

Amalinei, C., I.D. Caruntu and R.A. Balan, 2007. Biology of metalloproteinases. Rom J. Morphol. Embryol., 48: 323-334.

Reuter, S., S.C. Gupta, M.M. Chaturvedi and B.B. Aggarwal, 2010. Oxidative stress, inflammation and cancer: How are they linked? Free Radical Biol. Med., 49: 1603-1616.

Park, K.P., A. Rosell, C. Foerch, C. Xing and W.J. Kim et al., 2009. Plasma and brain matrix metalloproteinase-9 after acute focal cerebral ischemia in rats. Stroke, 40: 2836-2842.

Abdelnaseer, M., N. Elfayomi, E. Hassan, M. Kamal, A. Hamdy and E. Elsawy, 2015. Serum matrix metalloproteinase-9 in acute ischemic stroke and its relation to stroke severity. Egypt. J. Neurol. Psychiatry Neurosurg., 52: 274-278.

Barbieri, A., E. Giuliani, C. Carone, F. Pederzoli and G. Mascheroni et al., 2013. Clinical severity of ischemic stroke and neural damage biomarkers in the acute setting: The STROke MArkers (STROMA) study. Minerva Anestesiol., 79: 750-757.

Jin, X., Y. Sun, J. Xu and W. Liu, 2015. Caveolinâ€1 mediates tissue plasminogen activatorâ€induced MMPâ€9 upâ€regulation in cultured brain microvascular endothelial cells. J. Neurochem., 132: 724-730.

Zhang, X.S., X. Zhang, Q.R. Zhang, Q. Wu, W. Li, T.W. Jiang and C.H. Hang, 2015. Astaxanthin reduces matrix metalloproteinase-9 expression and activity in the brain after experimental subarachnoid hemorrhage in rats. Brain Res., 1624: 113-124.

Chaturvedi, M. and L. Kaczmarek, 2014. Mmp-9 inhibition: A therapeutic strategy in ischemic stroke. Mol. Neurobiol., 49: 563-573.

Syarif, A., P. Ascobat, A. Estuningtyas, R. Setiabudy and A. Setiawati et al., 2007. Pharmacology and Therapeutics. Department of Pharmacology and Therapeutics, Jakarta.

Setyopranoto, I., 2011. Stroke: Symptoms and management. Continuing Med. Educ., 38: 247-249.

Choi, I.Y., P. Lee, D.R. Denney, K. Spaeth and O. Nast et al., 2014. Dairy intake is associated with brain glutathione concentration in older adults. Am. J. Clin. Nutr., 101: 287-293.

Lamers, Y., B. O'Rourke, L.R. Gilbert, C. Keeling, D.E. Matthews, P.W. Stacpoole and J.F. Gregory III, 2009. Vitamin B-6 restriction tends to reduce the red blood cell glutathione synthesis rate without affecting red blood cell or plasma glutathione concentrations in healthy men and women. Am. J. Clin. Nutr., 90: 336-343.

Dogan, H., 2017. Matrix metalloproteinases and oxidative stress in patients with AECOPD. J. Clin. Anal. Med., 8: 64-67.

Naito, Y., K. Matsuo, Y. Kokubo, Y. Narita and H. Tomimoto, 2010. Higherâ€dose glutathione therapy for Parkinson's disease in Japan: Is it really safe? Movement Disorders, 25: 962-962.

Kendre, G., R. Raghavan, S. Cheriyamundath and J. Madassery, 2013. Tetracycline and glutathione inhibit matrix metalloproteinase activity: An in vitro study using culture supernatants of L929 and dalton lymphoma cell lines. J. Cancer Res., Vol. 2013.

Duan, X., Z. Wen, H. Shen, M. Shen and G. Chen, 2016. Intracerebral hemorrhage, oxidative stress and antioxidant therapy. Oxidative Med. Cell. Longevity, Vol. 2016.

Schumacher, C.P.K., M.T. Sicart, L. Khadari-Essalouh and Y. Robbe, 2001. Glutathione uptake after intraperitoneal administration and glutathione radiopharmacology after rectal administration, in mice. Il Farmaco, 56: 175-180.

Green, C.O., A.V. Badaloo, J.W. Hsu, C. Taylor-Bryan, M. Reid, T. Forrester and F. Jahoor, 2014. Effects of randomized supplementation of methionine or alanine on cysteine and glutathione production during the early phase of treatment of children with edematous malnutrition. Am. J. Clin. Nutr., 99: 1052-1058.

Popa-Wagner, A., S. Mitran, S. Sivanesan, E. Chang and A.M. Buga, 2013. ROS and brain diseases: The good, the bad and the ugly. Oxidative Med. Cell. Longevity, Vol. 2013.

Garrido, M., Y. Tereshchenko, Z. Zhevtsova, G. Taschenberger, M. Bahr and S. Kugler, 2011. Glutathione depletion and overproduction both initiate degeneration of nigral dopaminergic neurons. Acta Neuropathol., 121: 475-485.

Allen, J. and R.D. Bradley, 2011. Effects of oral glutathione supplementation on systemic oxidative stress biomarkers in human volunteers. J. Altern. Complement. Med., 17: 827-833.

Richie, Jr.J.P., S. Nichenametla, W. Neidig, A. Calcagnotto, J.S. Haley, T.D. Schell and J.E. Muscat, 2015. Randomized controlled trial of oral glutathione supplementation on body stores of glutathione. Eur. J. Nutr., 54: 251-263.

Hernawati, S., 2013. Mechanism of chronic inflamantory signaling transduction with cancer. http://studylibid.com/doc/94895/mekanisme-signaling-transduction-inflamasi-kronis-dengan.

Krizkova, S., O. Zitka, M. Masarik, V. Adam and M. Stiborova et al., 2011. Clinical importance of matrix metalloproteinases. Bratislavske Lekarske Listy, 112: 435-440.

Food and Drug Supervisory Agency of the Republic of Indonesia, 2005. Basic regulation supervision of food supplements 2005; 26. http://www.pom.go.id/pom/hukum_ perundangan/pdf/final kep_lampiran.pdf.

Song, J., J. Park, Y. Oh and J.E. Lee, 2015. Glutathione suppresses cerebral infarct volume and cell death after ischemic injury: Involvement of FOXO3 inactivation and Bcl2 expression. Oxidative Med. Cell. Longevity, Vol. 2015.

McKinley-Barnard, S., T. Andre, M. Morita and D.S. Willoughby, 2015. Combined L-citrulline and glutathione supplementation increases the concentration of markers indicative of nitric oxide synthesis. J. Int. Soc. Sports Nutr., Vol. 12.

Mittal, M., M.R. Siddiqui, K. Tran, S.P. Reddy and A.B. Malik, 2014. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signaling, 20: 1126-1167.

Castellini, C., S. Belletti, P. Govoni and S. Guizzardi, 2017. Anti inflammatory property of PDRN-An in vitro study on cultured macrophages. Adv. Biosci. Biotechnol., 8: 13-26.

Iyer, R.P., N.L. Patterson, F.A. Zouein, Y. Ma, V. Dive, L.E. de Castro Bras and M.L. Lindsey, 2015. Early matrix metalloproteinase-12 inhibition worsens post-myocardial infarction cardiac dysfunction by delaying inflammation resolution. Int. J. Cardiol., 185: 198-208.

Mischley, L.K., M.F. Vespignani and J.S. Finnell, 2013. Safety survey of intranasal glutathione. J. Altern. Complement. Med., 19: 459-463.

Silverman, M.N., B.D. Pearce, C.A. Biron and A.H. Miller, 2005. Immune modulation of the hypothalamic-pituitary-adrenal (HPA) axis during viral infection. Viral Immunol., 18: 41-78.

Reviono, Suradi and Sukarti, 2015. The association of N-Acetylcysteine administration with the level of glutathion, interferon gamma and body mass index in pulmonary TB patients. J. Respir Indo., 35: 235-246.

Indra, M.R. and C.P. Gasmara, 2016. UCAO (Unilateral cerebral artery occlussion) method increases the level of Mmp-9 brain tissue in rats model of ischemic stroke. Malang Neurol. J., 2: 46-50.

Morris, T., M. Stables, A. Hobbs, P. de Souza and P. Colville-Nash et al., 2009. Effects of low-dose aspirin on acute inflammatory responses in humans. J. Immunol., 183: 2089-2096.

Morley, J., 1977. Mechanism of action of aspirin in inflammation. Proc. Roy Soc. Med., 70: 32-36.

Alfonso, L., G. Ai, R.C. Spitale and G.J. Bhat, 2014. Molecular targets of aspirin and cancer prevention. Br. J. Cancer, 111: 61-67.

Canazza, A., L. Minati, C. Boffano, E. Parati and S. Binks, 2014. Experimental models of brain ischemia: A review of techniques, magnetic resonance imaging, and investigational cell-based therapies. Fron. Neurol.

Pizzorno, J., 2014. Glutathione!. Integr. Med. (Encinitas), 13: 8-12.

Murray, R.K., D.A. Bender, K.M. Botham, P.J. Kennelly and V.W. Rodwell, 2011. Biokimia Kedokteran Harper. 29th Edn., McGraw-Hill Education, Jakarta.

Raza, H. and A. John, 2012. Implications of altered glutathione metabolism in aspirin-induced oxidative stress and mitochondrial dysfunction in HepG2 cells. PloS One, Vol. 7.

Khalilullah, S.A., 2011. Use of antiplatelet (Aspirin) in acute ischemic stroke. Department of Neurosurgery dr. Zainoel Abidin Teaching Hospital Syiah Medical Faculty. Kuala University, Indonesia.

Downloads

Published

15.10.2018

Issue

Section

Research Article

How to Cite

Anam, C., Retnaningsih, & Suci, N. (2018). Glutathione Supplementation Reduces MMP-9 Levels and Infarct Area in Rats Models of Acute Ischemic Stroke. Pakistan Journal of Nutrition, 17(11), 535–541. https://doi.org/10.3923/pjn.2018.535.541