Evidence-Based Therapeutic Effects of Anthocyanins from Foods
DOI:
https://doi.org/10.3923/pjn.2019.1.11Keywords:
Anthocyanin, antimicrobial, cancer, health benefit, obesityAbstract
This review covers potential health benefits and efficacies of anthocyanins as well as anthocyanidins, in the prevention of several diseases. Blue, red and purple coloured fruits, vegetables and grains are rich in anthocyanins and have several health benefits, such as prevention of chronic diseases, antimicrobial, antioxidative and anti-inflammatory effects as well as improve vision and memory. Various in vitro and in vivo studies demonstrated the efficacy of anthocyanins in fruits and vegetables for the prevention of diseases and other health benefits. Most of the studies showed positive results towards the improvement of disease conditions. In short, anthocyanins and the anthocyanin-rich extracts are some of the best remedies used in prevention of several diseases, memory enhancement and behavioural improvement.
References
Khoo, H.E., A. Azlan, S.T. Tang and S.M. Lim, 2017. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res., Vol. 61.
Khoo, H.E., L.Y. Chew, A. Ismail and A. Azlan, 2013. Anthocyanins in Purple Colored Fruits. In: Polyphenols: Chemistry, Dietary Sources and Health Benefits, Sun, J., K.N. Prasad, A. Ismail, B. Yang, X. You and L.L. Xiangrong (Eds.). Nova Science Publishers, New York, pp: 133-151.
Schieber, M. and N.S. Chandel, 2014. ROS function in redox signaling and oxidative stress. Curr. Biol., 24: R453-R462.
Routray, W. and V. Orsat, 2011. Blueberries and their anthocyanins: Factors affecting biosynthesis and properties. Comprehensive Rev. Food Sci. Food Saf., 10: 303-320.
Ferretti, G., T. Bacchetti, A. Belleggia and D. Neri, 2010. Cherry antioxidants: From farm to table. Molecules, 15: 6993-7005.
He, J. and M.M. Giusti, 2010. Anthocyanins: Natural colorants with health-promoting properties. Annu. Rev. Food Sci. Technol., 1: 163-187.
Wang, L.S. and G.D. Stoner, 2008. Anthocyanins and their role in cancer prevention. Cancer Lett., 269: 281-290.
Bi, X., J. Zhang, C. Chen, D. Zhang, P. Li and F. Ma, 2014. Anthocyanin contributes more to hydrogen peroxide scavenging than other phenolics in apple peel. Food Chem., 152: 205-209.
Neill, S.O., K.S. Gould, P.A. Kilmartin, K.A. Mitchell and K.R. Markham, 2002. Antioxidant activities of red versus green leaves in Elatostema rugosum. Plant Cell Environ., 25: 539-547.
Di Matteo, A., R. Russo, G. Graziani, A. Ritieni and C. Di Vaio, 2017. Characterization of autochthonous sweet cherry cultivars (Prunus avium L.) of Southern Italy for fruit quality, bioactive compounds and antioxidant activity. J. Sci. Food Agric., 97: 2782-2794.
Callaghan, C.M., R.E. Leggett and R.M. Levin, 2017. A comparison of the antioxidants and carbohydrates in common wines and grape juices. Free Radicals Antioxid., 7: 86-89.
Genskowsky, E., L.A. Puente, J.A. Perez-Alvarez, J. Fernandez-Lopez, L.A. Munoz and M. Viuda-Martos, 2016. Determination of polyphenolic profile, antioxidant activity and antibacterial properties of maqui [Aristotelia chilensis (Molina) Stuntz] a Chilean blackberry. J. Sci. Food Agric., 96: 4235-4242.
Sankhari, J.M., M.C. Thounaojam, R.N. Jadeja, R.V. Devkar and A.V. Ramachandran, 2012. Anthocyanin-rich red cabbage (Brassica oleracea L.) extract attenuates cardiac and hepatic oxidative stress in rats fed an atherogenic diet. J. Sci. Food Agric., 92: 1688-1693.
Khoo, H.E., A. Azlan, M.H. Nurulhuda, A. Ismail, F. Abas, M. Hamid and S. Roowi, 2013. Antioxidative and cardioprotective properties of anthocyanins from defatted dabai extracts. Evidence-Based Complement. Altern. Med., Vol. 2013.
Nurulhuda, M.H., A. Azlan, A. Ismail, Z. Amom and F.H. Shakirin, 2013. Sibu olive inhibits artherosclerosis by cholesterol lowering effect in cholesterol fed-rabbit. Proceedings of the 4th International Conference on Biomedical Engineering in Vietnam, IFMBE Vol. 49, January 2013, Springer, Berlin, Heidelberg, pp: 141-144.
Qin, Y., M. Xia, J. Ma, Y.T. Hao and J. Liu et al., 2009. Anthocyanin supplementation improves serum LDL-and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects. Am. J. Clin. Nutr., 90: 485-492.
Alvarez-Suarez, J.M., F. Giampieri, S. Tulipani, T. Casoli and G. di Stefano et al., 2014. One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans. J. Nutr. Biochem., 25: 289-294.
Kamiloglu, S., A.A. Pasli, B. Ozcelik, J. van Camp and E. Capanoglu, 2015. Colour retention, anthocyanin stability and antioxidant capacity in black carrot (Daucus carota) jams and marmalades: Effect of processing, storage conditions and in vitro gastrointestinal digestion. J. Funct. Foods, 13: 1-10.
Khandare, V., S. Walia, M. Singh and C. Kaur, 2011. Black carrot (Daucus carota ssp. sativus) juice: Processing effects on antioxidant composition and color. Food Bioprod. Process., 89: 482-486.
Shakirin, F.H., K.N. Prasad, A. Ismail, L.C. Youn and A. Azrina, 2010. Antioxidant capacity of underutilized Malaysian Canarium odontophyllum (dabai) Miq. fruit. J. Food Compos. Anal., 23: 777-781.
Chew, L.Y., K.N. Prasad, I. Amin, A. Azrina and C.Y. Lau, 2011. Nutritional composition and antioxidant properties of Canarium odontophyllum Miq. (dabai) fruits. J. Food Compos. Anal., 24: 670-677.
Wu, X. and R.L. Prior, 2005. Identification and characterization of anthocyanins by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry in common foods in the United States: Vegetables, Nuts and Grains. J. Agric. Food Chem., 53: 3101-3113.
Maritim, A.C., R.A. Sanders and J.B. Watkins III, 2003. Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxicol., 17: 24-38.
Scalzo, R.L., A. Genna, F. Branca, M. Chedin and H. Chassaigne, 2008. Anthocyanin composition of cauliflower (Brassica oleracea L. var. botrytis) and cabbage (B. oleracea L. var. capitata) and its stability in relation to thermal treatments. Food Chem., 107: 136-144.
Wallace, T.C., 2011. Anthocyanins in cardiovascular disease. Adv. Nutr., 2: 1-7.
Thompson, K., W. Pederick and A.B. Santhakumar, 2016. Anthocyanins in obesity-associated thrombogenesis: A review of the potential mechanism of action. Food Funct., 7: 2169-2178.
Cassidy, A., M. Bertoia, S. Chiuve, A. Flint, J. Forman and E.B. Rimm, 2016. Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men. Am. J. Clin. Nutr., 104: 587-594.
Cassidy, A., K.J. Mukamal, L. Liu, M. Franz, A.H. Eliassen and E.B. Rimm, 2013. High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation, 127: 188-196.
Cushnie, T.P.T. and A.J. Lamb, 2005. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 26: 343-356.
Pojer, E., F. Mattivi, D. Johnson and C.S. Stockley, 2013. The case for anthocyanin consumption to promote human health: A review. Compr. Rev. Food Sci. Food Saf., 12: 483-508.
Puupponen-Pimia, R., L. Nohynek, C. Meier, M. Kahkonen, M. Heinonen, A. Hopia and K.M. Oksman-Caldentey, 2001. Antimicrobial properties of phenolic compounds from berries. J. Applied Microbiol., 90: 494-507.
Cote, J., S. Caillet, G. Doyon, D. Dussault, J.F. Sylvain and M. Lacroix, 2011. Antimicrobial effect of cranberry juice and extracts. Food Control, 22: 1413-1418.
Wafa, B.A., M. Makni, S. Ammar, L. Khannous and A.B. Hassana et al., 2017. Antimicrobial effect of the Tunisian Nana variety Punica granatum L. extracts against Salmonella enterica (serovars Kentucky and Enteritidis) isolated from chicken meat and phenolic composition of its peel extract. Int. J. Food Microbiol., 241: 123-131.
Caceres, A., O. Cabrera, O. Morales, P. Mollinedo and P. Mendia, 1991. Pharmacological properties of Moringa oleifera. 1: Preliminary screening for antimicrobial activity. J. Ethnopharmacol., 33: 213-216.
Cisowska, A., D. Wojnicz and A.B. Hendrich, 2011. Anthocyanins as antimicrobial agents of natural plant origin. Nat. Prod. Commun. 6: 149-156.
Lazar, M.A., 2005. How obesity causes diabetes: Not a tall tale. Science, 307: 373-375.
Heyman, L., U. Axling, N. Blanco, O. Sterner, C. Holm and K. Berger, 2014. Evaluation of beneficial metabolic effects of berries in high-fat fed C57BL/6J mice. J. Nutr. Metab., Vol. 2014.
Baum, J.I., L.R. Howard, R.L. Prior and S.O. Lee, 2016. Effect of Aronia melanocarpa (Black Chokeberry) supplementation on the development of obesity in mice fed a high-fat diet. J. Berry Res., 6: 203-212.
Guenther, M., R. James, J. Marks, S. Zhao, A. Szabo and S. Kidambi, 2014. Adiposity distribution influences circulating adiponectin levels. Transl, Res., 164: 270-277.
Wu, T., Q. Tang, Z. Gao, Z. Yu, H. Song, X. Zheng and W. Chen, 2013. Blueberry and mulberry juice prevent obesity development in C57BL/6 mice. PLoS One, Vol. 8.
Zhang, X., Q. Lv, S. Jia, Y. Chen, C. Sun, X. Li and K. Chen, 2016. Effects of flavonoid-rich Chinese bayberry (Morella rubra Sieb. et Zucc.) fruit extract on regulating glucose and lipid metabolism in diabetic KK-Ay mice. Food Funct., 7: 3130-3140.
Kent, K., K. Charlton, S. Roodenrys, M. Batterham and J. Potter et al., 2017. Consumption of anthocyanin-rich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia. Eur. J. Nutr., 56: 333-341.
Myers Jr, M.G., R.L. Leibel, R.J. Seeley and M.W. Schwartz, 2010. Obesity and leptin resistance: Distinguishing cause from effect. Trends Endocrinol. Metab., 21: 643-651.
Meydani, M. and S.T. Hasan, 2010. Dietary polyphenols and obesity. Nutrients, 2: 737-751.
Guo, H. and W. Ling, 2015. The update of anthocyanins on obesity and type 2 diabetes: Experimental evidence and clinical perspectives. Rev. Endocr. Metab. Disord., 16: 1-13.
Wang, Y., X.N. Zhang, W.H. Xie, Y.X. Zheng and J.P. Cao et al., 2016. The growth of SGC-7901 tumor xenografts was suppressed by Chinese bayberry anthocyanin extract through upregulating KLF6 gene expression. Nutrients, Vol. 8.
Hui, C., Y. Bin, Y. Xiaoping, Y. Long, C. Chunye, M. Mantian and L. Wenhua, 2010. Anticancer activities of an anthocyanin-rich extract from black rice against breast cancer cells in vitro and in vivo. Nutr. Cancer, 62: 1128-1136.
Ferrara, N., 2009. Vascular endothelial growth factor. Arteriosclerosis Thrombosis Vasc. Biol., 29: 789-791.
Tsai, T.C., H.P. Huang, Y.C. Chang and C.J. Wang, 2014. An anthocyanin-rich extract from Hibiscus sabdariffa linnaeus inhibits N-nitrosomethylurea-induced leukemia in rats. J. Agric. Food Chem., 62: 1572-1580.
Venancio, V.P., P.A. Cipriano, H. Kim, L.M.G. Antunes, S.T. Talcott and S.U. Mertens-Talcott, 2017. Cocoplum (Chrysobalanus icaco L.) anthocyanins exert anti-inflammatory activity in human colon cancer and non-malignant colon cells. Food Funct., 8: 307-314.
Fan, M.J., I.C. Wang, Y.T. Hsiao, H.Y. Lin and N.Y. Tang et al., 2015. Anthocyanins from black rice (Oryza sativa L.) demonstrate antimetastatic properties by reducing MMPs and NF-κB expressions in human oral cancer CAL 27 cells. Nutr. Cancer, 67: 327-338.
Peiffer, D.S., N.P. Zimmerman, L.S. Wang, B. Ransom and S.G. Carmella et al., 2014. Chemoprevention of esophageal cancer with black raspberries, their component anthocyanins and a major anthocyanin metabolite, protocatechuic acid. ‎Cancer Prev. Res., 7: 574-584.
Kuntz, S., C. Kunz and S. Rudloff, 2015. Inhibition of pancreatic cancer cell migration by plasma anthocyanins isolated from healthy volunteers receiving an anthocyanin-rich berry juice. Eur. J. Nutr., 56: 203-214.
Luo, L.P., B. Han, X.P. Yu, X.Y. Chen and J. Zhou et al., 2014. Anti-metastasis activity of black rice anthocyanins against breast cancer: Analyses using an ErbB2 positive breast cancer cell line and tumoral xenograft model. Asian Pac. J. Cancer Prev., 15: 6219-6225.
Lu, J.N., W.S. Lee, A. Nagappan, S.H. Chang and Y.H. Choi et al., 2015. Anthocyanins from the fruit of Vitis coignetiae Pulliat potentiate the cisplatin activity by inhibiting PI3K/Akt signaling pathways in human gastric cancer cells. J. Cancer Prev., 20: 50-56.
Shukitt-Hale, B., M.E. Kelly, D.F. Bielinski and D.R. Fisher, 2016. Tart cherry extracts reduce inflammatory and oxidative stress signaling in microglial cells. Antioxidants, Vol. 5, No. 4.
Perry, V.H., 2010. Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathol., 120: 277-286.
Joseph, J.A., B. Shukitt-Hale and G. Casadesus, 2005. Reversing the deleterious effects of aging on neuronal communication and behavior: Beneficial properties of fruit polyphenolic compounds. Am. J. Clin. Nutr., 81: 313S-316S.
Gutierres, J.M., F.B. Carvalho, M.R.C. Schetinger, P. Agostinho and P.C. Marisco et al., 2014. Neuroprotective effect of anthocyanins on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia in rats. Int. J. Dev. Neurosci., 33: 88-97.
Klinkenberg, I. and A. Blokland, 2010. The validity of scopolamine as a pharmacological model for cognitive impairment: A review of animal behavioral studies. Neurosci. Biobehav. Rev., 34: 1307-1350.
Rehman, S.U., S.A. Shah, T. Ali, J.I. Chung and M.O. Kim, 2017. Anthocyanins reversed D-galactose-induced oxidative stress and neuroinflammation mediated cognitive impairment in adult rats. Mol. Neurobiol., 54: 255-271.
Kent, K., K.E. Charlton, M. Netzel and K. Fanning, 2017. Food-based anthocyanin intake and cognitive outcomes in human intervention trials: A systematic review. J. Hum. Nutr. Diet., 30: 260-274.
Smeriglio, A., D. Barreca, E. Bellocco and D. Trombetta, 2016. Chemistry, pharmacology and health benefits of anthocyanins. Phytother. Res., 30: 1265-1286.
Kalt, W., J.E. McDonald, S.A.E. Fillmore and F. Tremblay, 2014. Blueberry effects on dark vision and recovery after photobleaching: Placebo-controlled crossover studies. J. Agric. Food Chem., 62: 11180-11189.
Canter, P.H. and E. Ernst, 2004. Anthocyanosides of Vaccinium myrtillus (Bilberry) for night vision-a systematic review of placebo-controlled trials. Survey Ophthalmol., 49: 38-50.
Lee, S.H., E. Jeong, S.S. Paik, J.H. Jeon and S.W. Jung et al., 2014. Cyanidin-3-glucoside extracted from mulberry fruit can reduce N-methyl-N-nitrosourea-induced retinal degeneration in rats. Curr. Eye Res., 39: 79-87.
Nakamura, S., J. Tanaka, T. Imada, H. Shimoda and K. Tsubota, 2014. Delphinidin 3,5-O-diglucoside, a constituent of the maqui berry (Aristotelia chilensis) anthocyanin, restores tear secretion in a rat dry eye model. J. Funct. Foods, 10: 346-354.
Ozawa, Y., M. Kawashima, S. Inoue, E. Inagaki and A. Suzuki et al., 2015. Bilberry extract supplementation for preventing eye fatigue in video display terminal workers. J. Nutr. Health Aging, 19: 548-554.
Downloads
Published
Issue
Section
License
Copyright (c) 2019 The Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.