Comparative Effect of Tempe and Soymilk on Fasting Blood Glucose, Insulin Level and Pancreatic Beta Cell Expression (Study on Streptozotocin-Induced Diabetic Rats)

Authors

  • Siti Harnina Bintari Department of Biology, Faculty of Mathematics and Sciences, Semarang State University, Semarang, Central Java, Indonesia
  • Natalia Desy Putriningtyas Magister of Nutrition, Faculty of Medicine, Diponegoro University, Semarang, Central Java, Indonesia
  • Kartika Nugraheni Department of Nutrition, Faculty of Nursing and Health Science, University of Muhammadiyah, Semarang, Central Java, Indonesia
  • Nyoman Suci Widyastiti Department of Clinical Pathology, Faculty of Medicine, Diponegoro University, Semarang, Central Java, Indonesia
  • Edi Dharmana Department of Parasitology, Faculty of Medicine, Diponegoro University, Semarang, Central Java, Indonesia
  • Andrew Johan Department of Biochemistry, Faculty of Medicine, Diponegoro University, Semarang, Central Java, Indonesia

DOI:

https://doi.org/10.3923/pjn.2015.239.246

Keywords:

Beta cell expression, diabetes, fasting blood glucose, soymilk, tempe

Abstract

Hyperglycemia in diabetes mellitus due to pancreatic beta cell destruction can cause the raising of free radicals production. Soy isoflavone-containing diets have been reported to be beneficial in diabetes because they show potential antioxidant and antihyperglycemia activities. This study was conducted to analyze the difference between isoflavone aglycones in tempe and isoflavone glycosides in soymilk on beta cell function including insulin secretion, fasting blood glucose (FBG) and insulin expression of pancreatic beta cells. Thirty sprague dawley (SD) male rats were randomly divided into 3 following groups: (K1) diabetic control (P1) tempe flour 1.8 g (P2) soymilk powder 1.35 g. The treatment were given everyday for 28 days via oral gavage. FBG was measured using the GOD-PAP method, serum insulin was measured using ELISA, insulin expression analysis was done by immunohistochemical. Value of p less than 5% (p<0.05) was considered statistically significant. Tempe flour significantly decrease FBG level better than soy milk and control group (p<0.01). Although both groups showed an increase in serum insulin level after intervention, there was no significant different between them (p = 0.639). There were also a significantly decrease in FBG level on soymilk group compared to control (p<0.01). The mean insulin expression on K1, P1 and P2 were 2.67±2.34, 6.17±1.47 and 6.83±1.17, respectively. The insulin expression of both groups were not significantly different (p = 0.405). It is concluded that tempe flour shows a better anti-diabetic activity than soymilk.

References

American Diabetes Association, 2010. Standards of medical care in diabetes-2010. Diabetes Care, 33: S11-S61.

American Diabetes Association, 2012. Diagnosis and classification of diabetes mellitus. Diabetes Care, 35: S64-S71.

American Diabetes Association, 2003. Management of dyslipidemia in adults with diabetes. Diabetes Care, 26: 83-86.

Allred, D.C., 1998. Scoring immunostained slides. Mod. Pathol., 11: 155-168.

Bavia, A.C.F., C.E. da Silva, M.P. Ferreira, R.S. Leite, J.M.G. Mandarino and M.C. Carrao-Panizzi, 2012. Chemical composition of tempeh from soybean cultivars specially developed for human consumption. Food Sci. Technol., 32: 613-620.

Bintari, S.H., 2013. Pasteurization for hygienic tempe: Study case of Krobokan Tempe yesterday and today. GSTF Int. J. BioSci., 2: 39-44.

Cheng, S.Y., N.S. Shaw, K.S. Tsai and C.Y. Chen, 2004. The hypoglycemic effects of soy isoflavones on postmenopausal women. J. Women's Health, 13: 1080-1086.

Cassidy, A., J.E. Brown, A. Hawdon, M.S. Faughnan and L.J. King et al., 2006. Factors affecting the bioavailability of soy isoflavones in humans after ingestion of physiologically relevant levels from different soy foods. J. Nutr., 136: 45-51.

Day, A.J., F.J. Canada, J.C. Diaz, P.A. Kroon and R. Mclauchlan et al., 2000. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett., 468: 166-170.

Esteves, E.A., J. Bressan, N.M.B. Costa, H.S.D. Martino, S.S. Donkin and J.A. Story, 2011. Modified soybean affects cholesterol metabolism in rats similarly to a commercial cultivar. J. Med. Food, 14: 1363-1369.

Fu, Z., W. Zhang, W. Zhen, H. Lum, J. Nadler and J. Bassaganya-Riera et al., 2010. Genistein induces pancreatic β-cell proliferation through activation of multiple signaling pathways and prevents insulin-deficient diabetes in mice. Endocrinology, 151: 3026-3037.

Fu, Z. and D. Liu, 2009. Long-term exposure to genistein improves insulin secretory function of pancreatic β-cells. Eur. J. Pharmacol., 616: 321-327.

Goldberg, I.J., 2001. Diabetic dyslipidemia: Causes and consequences. J. Clin. Endocrinol. Metab., 86: 965-971.

Gilbert, E.R. and D. Liu, 2013. Anti-diabetic functions of soy isoflavone genistein: Mechanisms underlying its effects on pancreatic β-cell function. Food Funct., 4: 200-212.

Hsu, C.S., W.C. Chiu and S.L. Yeh, 2003. Effects of soy isoflavone supplementation on plasma glucose, lipids and antioxidant enzyme activities in streptozotocin-induced diabetic rats. Nutr. Res., 23: 65-75.

Hanhineva, K., R. Torronen, I. Bondia-Pons, J. Pekkinen, M. Kolehmainen, H. Mykkanen and H. Poutanen, 2010. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci., 11: 1365-1402.

IEA., 2013. Consensus of management and prevention of diabetes mellitus type 2 in Indonesia. Indonesian Endocrinology Association (IEA), Indonesia.

MoRT., 2013. Soybean powder for drink. Ministry of Reaserch and Technology (MoRT), Indonesia.

Jonas, J.C., T.D. Plant, P. Gilon, P. Detimary, M. Nenquin and J.C. Henquin, 1995. Multiple effects and stimulation of insulin secretion by the tyrosine kinase inhibitor genistein in normal mouse islets. Br. J. Pharmacol., 114: 872-880.

Kalaiselvan, V., M. Kalaivani, A. Vijayakumar, K. Sureshkumar and K. Venkateskumar, 2010. Current knowledge and future direction of research on soy isoflavones as a therapeutic agents. Pharmacogn. Rev., 4: 111-117.

Kwon, D.Y., J.W. Daily III, H.K. Kim and S. Park, 2010. Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutr. Res., 30: 1-13.

Kwon, D.Y., S.M. Hong, I.S. Ahn, M.J. Kim, H.J. Yang and S. Park, 2011. Isoflavonoids and peptides from meju, long-term fermented soybeans, increase insulin sensitivity and exert insulinotropic effects in vitro. Nutrition, 27: 244-252.

Kavanagh, K., K.L. Jones, L. Zhang, D.M. Flynn, M.K. Shadoan and J.D. Wagner, 2008. High isoflavone soy diet increases insulin secretion without decreasing insulin sensitivity in premenopausal nonhuman primates. Nutr. Res., 28: 368-376.

Kaneto, H., Y. Kajimoto, J. Miyagawa, T. Matsuoka and Y. Fujitani et al., 1999. Beneficial effects of antioxidants in diabetes: Possible protection of pancreatic beta-cells against glucose toxicity. Diabetes, 48: 2398-2406.

King, R.A. and D.B. Brusill, 1998. Plasma and urinary kinetics of the isoflavones daidzein and genistein after a single soy meal in humans. Am. J. Clin. Nutr., 67: 867-872.

Larkin, T., W.E. Price and L. Astheimer, 2008. The key importance of soy isoflavone bioavailability to understanding health benefits. Crit. Rev. Food Sci. Nutr., 48: 538-552.

Lu, M.P., R. Wang, X. Song, R. Chibbar, X. Wang, L. Wu and Q.H. Meng, 2008. Dietary soy isoflavones increase insulin secretion and prevent the development of diabetic cataracts in streptozotocin-induced diabetic rats. Nutr. Res., 28: 464-471.

Lee, D.S. and S.H. Lee, 2001. Genistein, a soy isoflavone, is a potent α-glucosidase inhibitor. FEBS Lett., 501: 84-86.

Lee, J.S., 2006. Effects of soy protein and genistein on blood glucose, antioxidant enzyme activities and lipid profile in streptozotocin-induced diabetic rats. Life Sci., 79: 1578-1584.

Liu, D., W. Zhen, Z. Yang, J.D. Carter, H. Si and K.A. Reynolds, 2006. Genistein acutely stimulates insulin secretion in pancreatic β-cells through a cAMP-dependent protein kinase pathway. Diabetes, 55: 1043-1050.

McCue, P., Y.I. Kwon and K. Shetty, 2005. Anti-diabetic and anti-hypertensive potential of sprouted and solid-state bioprocessed soybean. Asia Pac. J. Clin. Nutr., 14: 145-152.

Nakajima, N., N. Nozaki, K. Ishihara, A. Ishikawa and H. Tsuji, 2005. Analysis of isoflavone content in tempeh, a fermented soybean and preparation of a new isoflavone-enriched tempeh. J. Biosci. Bioeng., 100: 685-687.

Nout, M.J.R. and J.L. Kiers, 2005. Tempe fermentation, innovation and functionality: Update into the third millenium. J. Applied Microbiol., 98: 789-805.

Piskula, M.K., J. Yamakoshi and Y. Iwai, 1999. Daidzein and genistein but not their glucosides are absorbed from the rat stomach. FEBS Lett., 447: 287-291.

MOH., 2007. Basic health research Indonesia in 2007: Survey report. Ministry of Health, National Institute of Health Research and Development, Jakarta.

Shim, J.Y., K.O. Kim, B.H. Seo and H.S. Lee, 2007. Soybean isoflavone extract improves glucose tolerance and raises the survival rate in streptozotocin-induced diabetic rats. Nutr. Res. Pract., 1: 266-272.

Song, T., K. Barua, G. Buseman and P.A. Murphy, 1998. Soy isoflavone analysis: Quality control and a new internal standard. Am. J. Clin. Nutr., 68: 1474S-1479S.

Sugano, M., 2005. Nutritional Implications of Soy. In: Soy in Health and Disease Prevention, Sugano, M. (Ed.). CRC Press, Boca Raton.

Szkudelski, T., 2012. Streptozotocin-nicotinamide-induced diabetes in the rat. Exp. Biol. Med., 237: 481-490.

Szkudelski, T., 2001. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res., 50: 537-546.

Sheetz, M.J. and G.L. King, 2002. Molecular understanding of hyperglycemia's adverse effects for diabetic complications. J. Am. Med. Assoc., 288: 2579-2588.

Steele, C., W.A. Hagopian, S. Gitelman, U. Masharani and M. Cavaghan et al., 2004. Insulin secretion in type 1 diabetes. Diabetes, 53: 426-433.

Wu, C., J. Shen, P. He, Y. Chen and L. Li et al., 2012. The α-glucosidase inhibiting isoflavones isolated from Belamcanda chinensis leaf extract. Rec. Nat. Prod., 6: 110-120.

Yang, B., Y. Chen, T. Xu, Y. Yu, T. Huang, X. Hu and D. Li, 2011. Systematic review and meta-analysis of soy products consumption in patients with type 2 diabetes mellitus. Asia Pac. J. Clin. Nutr., 20: 593-602.

Downloads

Published

15.03.2015

Issue

Section

Research Article

How to Cite

Bintari, S. H., Putriningtyas, N. D., Nugraheni, K., Widyastiti, N. S., Dharmana, E., & Johan, A. (2015). Comparative Effect of Tempe and Soymilk on Fasting Blood Glucose, Insulin Level and Pancreatic Beta Cell Expression (Study on Streptozotocin-Induced Diabetic Rats). Pakistan Journal of Nutrition, 14(4), 239–246. https://doi.org/10.3923/pjn.2015.239.246