Effects of Lemongrass Leaves as Essential Oil Sources on Rumen Microbial Ecology and Nutrient Digestibility in an in vitro System
DOI:
https://doi.org/10.3923/pjn.2019.254.259Keywords:
Essential oil, lemongrass leaves (Cymbopogon citratus ), nutrient digestibility, rumen fermentation, rumen microbial ecologyAbstract
Background and Objective: Modifying rumen fermentation using plant secondary metabolites has long been used as a nutritional strategy to improve feed efficiency and it leads to higher livestock productivity. An essential oil (EO) is a plant secondary metabolite with volatile characteristics that has various bioactive compounds and plays an important role in manipulating the fermentation process in the rumen and modifying feed efficiency. The aim of the study was to observe the effect of lemongrass leaves (Cymbopogon citratus), which are Indonesian herbs containing an essential oil (EO), as potential agents to manipulate rumen fermentation and to observe their effects on the rumen microbial population and nutrient digestibility in an in vitro system. Methodology: Five inclusion levels of lemongrass leaves (LEM), which were equal to the EO levels of 0, 25, 50, 75 and 100 mg L–1 on a DM basis, were added to a diet consisting of king grass and rice bran (40:60). An in vitro rumen fermentation method was used to determine nutrient digestibility and anaerobic inoculations were used to determine the total microbial count. All of the treatments were replicated five times and the collected data included the total rumen microbial population count, total protozoa count, dry matter digestibility (DMD), organic matter digestibility (OMD), crude protein digestibility (CPD) and crude fiber digestibility (CFD). Results: No difference was observed in the total protozoa count; however, an increase in EO supplemented with LEM decreased the total ruminal microorganism count (p<0.001). Furthermore, the inclusion of LEM in the diet affected DMD, OMD and CPD. The inclusion of LEM at 50, 75 and 100 mg L–1 decreased (p<0.01) OMD by 5.54, 5.24 and 6.17% and reduced DMD (p<0.01) by 10.02, 9.26 and 11.38%, respectively. Furthermore, there was considerable evidence that supplementation with LEM inhibited deamination, which resulted in low CPD. Interestingly, CFD was not affected by the addition of LEM. Conclusion: The study suggested that LEM caused a reduction in the total number of rumen microbes and that it potentially decreased ruminal digestibility; thus, EO supplemented with LEM should be limited to 25 mg L–1.
References
Patra, A.K. and J. Saxena, 2010. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry, 71: 1198-1222.
Klevenhusen, F., J.O. Zeitz, S. Duval, M. Kreuzer and C.R. Soliva, 2011. Garlic oil and its principal component diallyl disulfide fail to mitigate methane, but improve digestibility in sheep. Anim. Feed Sci. Technol., 166-167: 356-363.
Patra, A.K., 2011. Effects of essential oils on rumen fermentation, microbial ecology and ruminant production. Asian J. Anim. Vet. Adv., 6: 416-428.
Dorman, H.J.D. and S.G. Deans, 2000. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol., 88: 308-316.
Ultee, A., E.P. Kets and E.J. Smid, 1999. Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Applied Environ. Microbiol., 65: 4606-4610.
Griffin, S.G., S.G. Wyllie, J.L. Markham and D.N. Leach, 1999. The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Fragrance J., 14: 322-332.
Bakkali, F., S. Averbeck, D. Averbeck and M. Idaomar, 2008. Biological effects of essential oils-A review. Food Chem. Toxicol., 46: 446-475.
Calsamiglia, S., M. Busquet, P.W. Cardozo, L. Castillejos and A. Ferret, 2007. Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci., 90: 2580-2595.
Benchaar, C. and H. Greathead, 2011. Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Anim. Feed. Sci. Technol., 166-167: 338-355.
Castillejos, L., S. Calsamiglia and A. Ferret, 2006. Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. J. Dairy Sci., 89: 2649-2658.
Hanaa, A.R.M., Y.I. Sallam, A.S. El-Leithy and S.E. Aly, 2012. Lemongrass (Cymbopogon citratus) essential oil as affected by drying methods. Ann. Agric. Sci., 57: 113-116.
Bassole, I.H.N., A. Lamien-Meda, B. Bayala, L.C. Obame and A.J. Ilboudo et al., 2011. Chemical composition and antimicrobial activity of cymbopogon citratus and cymbopogon giganteus essential oils alone and in combination. Phytomedicine, 18: 1070-1074.
AOAC., 2005. Official Methods of Analysis. 18th Edn., Association of Official Analytical Chemists, Washington, DC., USA.
Al-Hilphy, A.R.S., 2015. Development of steam essential oils extractor. IOSR J. Agric. Vet. Sci., 8: 2319-2372.
Theodorou, M.K., B.A. Williams, M.S. Dhanoa, A.B. McAllan and J. France, 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol., 48: 185-197.
Menke, K.H. and H. Steingass, 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev., 28: 7-55.
Diaz, A., M. Avendano and A. Escobar, 1993. Evaluation of Sapindus saponaria as a defaunating agent and its effects on different ruminal digestion parameters. Livest. Res. Rural Dev., Vol. 5.
Hungate, R.E., 1966. The Rumen and its Microbes. Academic Press, London, pp: 23-29.
Benchaar, C., H.V. Petit, R. Berthiaume, D.R. Ouellet, J. Chiquette and P.V. Chouinard, 2007. Effects of essential oils on digestion, ruminal fermentation, rumen microbial populations, milk production and milk composition in dairy cows fed alfalfa silage or corn silage. J. Dairy Sci., 90: 886-897.
Wallace, R.J., N.R. McEwan, F.M. McInotoch, B. Teferedegne and C.J. Newbold, 2002. Natural products as manipulators of rumen fermentation. Asian-Australasian J. Anim. Sci., 10: 1458-1468.
Kamalak, A., A.I. Atalay, C.O. Ozkan, A. Tatliyer and E. Kaya, 2011. Effect of essential orange (Citrus sinensis L.) oil on rumen microbial fermentation using in vitro gas production technique. J. Anim. Plant Sci., 21: 764-769.
Beauchemin, K.A. and S.M. McGinn, 2006. Methane emissions from beef cattle: Effects of fumaric acid, essential oil and canola oil. J. Anim. Sci., 84: 1489-1496.
Yang, W.Z., B.N. Ametaj, C. Benchaar and K.A. Beauchemin, 2010. Dose response to cinnamaldehyde supplementation in growing beef heifers: Ruminal and intestinal digestion. J. Anim. Sci., 88: 680-688.
Lin, B., Y. Lu, A.Z.M. Salem, J.H. Wang, Q. Liang and J.X. Liu, 2013. Effects of essential oil combinations on sheep ruminal fermentation and digestibility of a diet with fumarate included. Anim. Feed Sci. Technol., 184: 24-32.
Castillejos, L., S. Calsamiglia, A. Ferrer and R. Losa, 2007. Effects of dose and adaptation time of a specific blend of essential oil compounds on rumen fermentation. Anim. Feed Sci. Technol., 132: 186-201.
Hart, K.J., D.R. Yanez-Ruiz, S.M. Duval, N.R. McEwan and C.J. Newbold, 2008. Plant extracts to manipulate rumen fermentation. Anim. Feed Sci. Technol., 147: 8-35.
McIntosh, F.M., P. Williams, R. Losa, R.J. Wallace, D. Beever and C.J. Newbold, 2003. Effects of essential oils on ruminal microorganisms and their protein metabolism. Appl. Environ. Microbiol., 69: 5011-5014.
Downloads
Published
Issue
Section
License
Copyright (c) 2019 The Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.