Serum Mineral Status and Long Bone Morphometry of Ovariectomized Rats Fed a Nano-Calcium Phosphate Diet
DOI:
https://doi.org/10.3923/pjn.2019.1058.1067Keywords:
Femur, minerals, morphometry, nano-calcium, Rattus norvegicus, serum, serum calcium, tibiaAbstract
Background and Objective: Serum calcium (Ca) is maintained at a balanced level under normal circumstances by a homeostatic system. When the serum Ca level is high, the excess will be deposited in the bone; however, if the serum Ca level is low, Ca will be resorbed from the bone and Ca absorption in the intestine will be increased. As a result, serum Ca metabolism can affect bone morphometry characteristics and Ca status in the body. The aim of this study was to investigate the effect of a nano-calcium phosphate diet on osteoporotic rats after ovariectomy. Experiments were conducted to analyse the serum response to Ca in rats that were ovariectomized and treated with a nano-calcium phosphate diet; additionally, the relationship between the diet and both the bone morphometry characteristics and Ca status in the body was examined. Materials and Methods: Female rats (Rattus norvegicus) aged 12 weeks were ovariectomized or acted as a control (non-ovariectomized rats). Euthanasia was carried out on 13-week-old control rats and ovariectomized (OVX) rats at the ages of 15, 17, 19 and 21 weeks. The 21-week-old OVX rats were divided into 3 groups and were given a nano-calcium phosphate diet containing a nano-Ca content of 0.10% (diet A), 0.40% (diet B) or 0.70% (diet C). At the ages of 27, 29, 31, 33 and 40 weeks, euthanasia was carried out for the collection of the serum, femur and tibia. The serum mineral levels [calcium (Ca), phosphorus (P) and magnesium (Mg)], morphometric characteristics (mass, mass density, length and diameter) of the long bones and Ca status in the body were analysed. Results: The results showed that in the ovariectomized rats, serum Ca and P levels decreased at week 7, while the Mg levels fluctuated. Treatment with the 0.40% nano-Ca diet could increase serum Ca levels from the 6th week of diet administration (age 27 weeks). The overall femoral morphometry and tibia characteristics, in addition to the mass density data, showed values that increased with age. The highest Ca absorption was shown by the OVX rats that consumed the 0.40% nano-Ca diet. The difference between the consumed and absorbed amounts of Ca was shown by the Ca content in the faeces, which averaged 68.07% for calcium intake. Conclusion: The female Rattus norvegicus white rats exhibited osteoporosis based on serum mineral status seven weeks post-ovariectomy. The effects of the nano-calcium phosphate diet were first observed in the sixth week of diet administration.
References
Balla, B., M. Sárvári, J.P. Kósa, B. Kocsis-Deák and B. Tobiás et al., 2019. Long-term selective estrogen receptor-beta agonist treatment modulates gene expression in bone and bone marrow of ovariectomized rats. J. Steroid Biochem. Mol. Biol., 188: 185-194.
Colaianni, G., 2019. Ovarian hormones and bone. Ref. Module Biomed. Sci.
Salamanna, F., V. Borsari, D. Contartese, N.N. Aldini and M. Fini, 2018. Link between estrogen deficiency osteoporosis and susceptibility to bone metastases: A way towards precision medicine in cancer patients. Breast, 41: 42-50.
Collins, B.C., E.K. Laakkonen and D.A. Lowe, 2019. Aging of the musculoskeletal system: How the loss of estrogen impacts muscle strength. Bone, 123: 137-144.
Narla, R.R. and S.M. Ott, 2018. Bones and the sex hormones. Kidney Int., 94: 239-242.
Hoenderop, J.G.J., A.W.C.M. van der Kemp, A. Hartog, S.F.J. van de Graaf, C.H. van Os, P.H.G.M. Willems and R.J.M. Bindels, 1999. Molecular identification of the Apical Ca2+ channel in 1,25-dihydroxyvitamin D3- responsive Epithelia. J. Biol. Chem., 274: 8375-8378.
van Abel, M., J.G.J. Hoenderop, O. Dardenne, R.S. Arnaud, C.H. van Os, H.J.P.T.M. van Leeuwen and R.J.M. Bindels, 2002. 1,25-Dihydroxyvitamin D3-independent stimulatory effect of estrogen on the expression of ECaC1 in the kidney. J. Am. Soc. Nephrol., 13: 2102-2109.
Van Abel, M., J.G.J. Hoenderop, A.W.C.M. van der Kemp, J.P.T.M. van Leeuwen and R.J.M. Bindels, 2003. Regulation of the epithelial Ca2+ channels in small intestine as studied by quantitative mRNA detection. Am. J. Physiol. Gastrointest. Liver Physiol. 285: 78-85.
Chow, J., J.H. Tobias, K.W. Colston and T.J. Chambers, 1992. Estrogen maintains trabecular bone volume in rats not only by suppression of bone resorption but also by stimulation of bone formation. J. Clin. Invest., 89: 74-78.
Majeska, R., J. Ryaby and T. Einhorn, 1994. Direct modulation of osteoblastic activity with estrogen. J. Bone Joint Surg. Am., 76: 713-721.
Qu, Q., M. Perala-Heape, A. Kapanen, J. Dahllund, J. Salo, H.K. Vaananen and P. Härkönen, 1998. Estrogen enhances differentiation of osteoblasts in mouse bone marrow culture. Bone, 22: 201-209.
Holzherr, M.L., R.W. Retallack, D.H. Gutteridge, R.I. Price and D.L. Faulkner et al., 2000. Calcium absorption in postmenopausal osteoporosis: Benefit of HRT plus calcitriol, but not HRT alone, in both malabsorbers and normal absorbers. Osteoporosis Int., 11: 43-51.
Van den Heuvel, E.G.H.M., M.H.C. Schoterman and T. Muijs, 2000. Transgalactooligosaccharides stimulate calcium absorption in postmenopausal women. J. Nutr., 130: 2938-2942.
Esteves, C.M., R.M. Moraes, F.C. Gomes, M.S. Marcondes, G.M. Lima and A.L. Anbinder, 2015. Ovariectomy-associated changes in interradicular septum and in tibia metaphysis in different observation periods in rats. Pathol.-Res. Pract., 211: 125-129.
Stone, K., D.C. Bauer, D.M. Black, P. Sklarin, K.E. Ensrud and S.R. Cummings, 1998. Hormonal predictors of bone loss in elderly women: A prospective study. J. Bone Miner. Res., 13: 1167-1174.
Slemenda, C., C. Longcope, M. Peacock, S. Hui and C.C. Johnston, 1996. Sex steroids, bone mass and bone loss. A prospective study of pre-, peri- and postmenopausal women. J. Clin. Invest., 97: 14-21.
Doherty, D.A., K.M. Sanders, M.A. Kotowicz and R.L. Prince, 2001. Lifetime and five-year age-specific risks of first and subsequent osteoporotic fractures in postmenopausal women. Osteoporosis Int., 12: 16-23.
Salamonsen, L.A. and J. Evans, 2018. Menstruation and Endometrial Repair. 2nd Edn., Elsevier, Amsterdam, Netherlands, pp: 320-325.
Carnesecchi, J. and J.M. Vanacker, 2016. Estrogen-Related Receptors and the control of bone cell fate. Mol. Cell. Endocrinol., 432: 37-43.
Mathavan, N., M.J. Turunen, M. Guizar-Sicairos, M. Bech, F. Schaff, M. Tagil and H. Isaksson, 2018. The compositional and nano-structural basis of fracture healing in healthy and osteoporotic bone. Sci. Rep., Vol. 8.
Sharma, D., A.I. Larriera, P.E. Palacio-Mancheno, V. Gattia and J.C. Fritton et al., 2018. The effects of estrogen deficiency on cortical bone microporosity and mineralization. Bone, 110: 1-10.
Romualdo, P.C., N.B.F.F. Cunha, G.B. Leoni, M.D. Sousa-Neto and A. Consolaro et al., 2018. The effect of ovariectomy and 2 antiresorptive therapeutic agents on bone response in rats: A 3-dimensional imaging analysis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol., 126: 218-225.
Elkomy, M.M. and F.G. Elsaid, 2015. Anti-osteoporotic effect of medical herbs and calcium supplementation on ovariectomized rats. J. Basic Applied Zool., 72: 81-88.
Silverman, S.L., 2011. Bisphosphonate use in conditions other than osteoporosis. Ann. N. Y. Acad. Sci., 1218: 33-37.
Cano, A., P. Chedraui, D.G. Goulis, P. Lopes and G. Mishra et al., 2018. Calcium in the prevention of postmenopausal osteoporosis: EMAS clinical guide. Maturitas, 107: 7-12.
Rocca, W.A., B.R. Grossardt and L.T. Shuster, 2011. Oophorectomy, menopause, estrogen treatment, and cognitive aging: Clinical evidence for a window of opportunity. Brain Res., 1379: 188-198.
AOAC., 2005. Official Methods of Analysis of AOAC International. 16th Edn., Association of Official Analytical Chemists, Arlington, VA., USA.
PT. Feedmill Indonesia, 2014. Pakan ikan apung dari malindo. https://www.indonetwork.co.id/.
Astuti, D.A., 2015. Diet Untuk Hewan Model. https://repository.ipb.ac.id/handle/123456789/81056
NRC., 2003. Nutrient Requirements of Nonhuman Primates. 2nd Edn., National Academies Press, Washington, DC., ISBN: 9780309172042, Pages: 306.
Sukandar, E.Y., R. Andrajati, J.I. Sigit, I.K. Adnyana, A.P. Setiadi and Kusnandar, 2008. ISO Farmakoterapi. PT. ISFI Penerbitan, Jakarta, Indonesia, Pages: 723.
Berdud, I., A. Martin-Malo, Y. Almaden, P. Aljama, M. Rodriguez and A.J. Felsenfeld, 1998. The PTH-Calcium relationship during a range of infused PTH doses in the parathyroidectomized rat. Calcified Tissue Int., 62: 457-461.
Aulyani, T.L., 2013. Pemberian kalsium nano Ca3(Po4)2 terhadap efektivitas penyerapan kalsium tulang hewan model tikus putih Rattus novergicus. B.Sc. Thesis Department of Nutrition and Feed Technology, Bogor Agricultural University, Bogor.
Chu, X., F.A. Guarraci and A. Agmo, 2015. Sociosexual behaviors and reproductive success of rats (Rattus norvegicus) in a seminatural environment Physiol. Behav., 151: 46-54.
Valentina, N.K., Y.A. Assa and M.E. Paruntu, 2015. Gambaran kadar fosfor darah pada lanjut usia 60-74 tahun. J. e-Biomedik, 3: 630-633.
Brink, E.J., A.C. Beynen, P.R. Dekker, E.C.H. van Beresteijn and R. van der Meer, 1992. Interaction of calcium and phosphate decreases ileal magnesium solubility and apparent magnesium absorption in rats. J. Nutr., 122: 580-586.
McDowell, L.R., 1992. Minerals in Animal and Human Nutrition 2nd Edn., Elsevier, Florida, USA., Pages: 644.
Santoso, B., 2010. Perbedaan kadar magnesium serum antara tikus putih (Rattus norvegicus) yang mati tenggelam di air tawar dengan di air laut. B.Sc. Thesis, Medical School Sebelas Maret University, Surakarta
McDowell, L.R., 2003. Minerals in Animal and Human Nutrition. 2nd Edn., Elsevier Science Health Science Division, FL., USA.
Masri, E., 2011. Pengaruh pemberian kalsium vitamin D dan zat besi terhadap kadar kalsium serum tikus putih (Rattus novergicus) galur wistar. Sci., J. Pharm. Health, 1: 27-34.
Chou, S.H. and T. Vokes, 2016. Vertebral morphometry. J. Clin. Densitom., 19: 48-53.
Gao, H., H. Chen, W. Chen, F. Tao, Y. Zheng and H Ruan, 2008. Effect of nanometer pearl powder on calcium absorption and utilization in rats. J. Food Chem., 109: 493-498.
Has, H., A. Napirah and A. Indi, 2014. Efek peningkatan serat kasar dengan penggunaan daun murbei dalam ransum broiler terhadap persentase bobot saluran pencernaan. J. Ilmu Teknol. Peternakan Trop., 1: 63-69.
Almatsier, S., 2004. Prinsip Dasar Ilmu Gizi. Gramedia Pustaka Utama, Jakarta, Indonesia.
Shiga, K., H. Hara, G. Okano, M. Ito, A. Minami and F. Tomita, 2003. Ingestion of difructose anhydride III and voluntary running exercise independently increase femoral and tibial bone mineral density and bone strength with increasing calcium absorption in rats. J. Nutr., 133: 4207-4211.
Yuliadi, T., 2016. Characterization of femur and tibia animal model rattus norvegicus with treatment of nano calcium phosphate in the diet. Universitas Indonesia, Depok, pp: 114-120.
Makfoeld, D., 2002. Kamus istilah pangan dan nutrisi. Kanisius, Yogyakarta, Indonesia, Pages: 388.
USDA., 2014. National nutrient data base for standard. Basic report 20649, tapioca, pearl, dry. The National Agricultural Library.
Downloads
Published
Issue
Section
License
Copyright (c) 2019 The Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.