Effects of Using Different Levels of Oil Palm Fronds (FOPFS) Fermented with Phanerochaete chrysosporium plus Minerals (P, S and Mg) Instead of Napier Grass on Nutrient Consumption and the Growth Performance of Goats


Authors

  • Dewi Febrina Faculty of Agriculture and Animal Sciences, State Islamic University Sultan Syarif Kasim, Riau, Indonesia
  • Novirman Jamarun Faculty of Animal Sciences, University of Andalas, Padang, Indonesia
  • Mardiati Zain Faculty of Animal Sciences, University of Andalas, Padang, Indonesia
  • Khasrad Faculty of Animal Sciences, University of Andalas, Padang, Indonesia

DOI:

https://doi.org/10.3923/pjn.2017.612.617

Keywords:

Fermented oil palm frond, goat rations, Napier grass, nutrient consumption, performance

Abstract

Objective: The objective of this study was to evaluate the effect of substituting Napier Grass (NG) with Fermented Oil Palm Fronds (FOPFs) plus minerals (P, S and Mg) on consumption and growth performance of goats. Materials and Methods: This study was carried out using a randomized block design with 5 treatments and 3 replications. The treatments for this study were: A = 40% NG+0% FOPFs+60% concentrate, B = 20% NG+20% FOPFs+60% concentrate, C = 0% NG+40% FOPFs+60% concentrate, D = 20% NG+20% FOPFs+60% concentrate plus P, S and Mg and E = 0% NG+40% FOPFs+60% concentrate plus P, S and Mg. The data were analysed using a one-way analysis of variance (ANOVA) and Duncan's Multiple Range Test (DMRT) was used to test the differences between treatments. The observed parameters were feed consumption and growth performance of goats. Results: The results of the study show that substituting NG with FOPFs (100%) plus minerals (P, S and Mg) in goat rations (treatment E) showed the highest nutrient consumption and average daily weight gain and the lowest feed conversion. Conclusion: It is concluded that FOPFs can be used as an alternative to NG in goat rations.

References

Ministry of Agriculture, 2015. Tree Crop Estate Statistics of Indonesia 2014-2016. In: Palm Oil, Subiyantoro, E. and Y. Arianto (Eds.). Directorate General of Estate Crops, Ministry of Agriculture, Jakarta, Indonesia.

Febrina, D., 2016. Pemanfaatan Hasil Biodelignifikasi Pelepah Sawit Menggunakan Kapang Phanerochaete chrysosporium Sebagai Pengganti Hijauan Pakan pada Ternak Kambing. Dissertation, Faculty of Animal Science. University of Andalas, Padang, Indonesia.

Febrina, D., N. Jamarun, M. Zain, Khasrad and R. Mariani, 2014. Biological delignification by Phanerochaete chrysosporium with addition of mineral Mn and its effect on nutrient content of oil palm frond. Proceedings of the 16th AAAP Animal Science Congress, November 10-14, 2014, Yogyakarta, Indonesia, pp: 1723-1726.

Kersten, P. and D. Cullen, 2007. Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet. Biol., 44: 77-87.

Singh, D. and S. Chen, 2008. The white-rot fungus Phanerochaete chrysosporium: Conditions for the production of lignin-degrading enzymes. Applied Microbiol. Biotechnol., 81: 399-417.

Dashtban, M., H. Schraft, T.A. Syed and W. Qin, 2010. Fungal biodegradation and enzymatic modification of lignin. Int. J. Biochem. Mol. Biol., 1: 36-50.

Chung, K.R., 2003. Involvement of calcium/calmodulin signaling in cercosporin toxin biosynthesis by Cercospora nicotianae. Applied Environ. Microbiol., 69: 1187-1196.

Hamman, O.B., T. de la Rubia and J. Martinez, 1999. The effect of manganese on the production of Phanerochaete flavido-alba ligninolytic peroxidases in nitrogen limited cultures. FEMS Microbiol. Lett., 177: 137-142.

Suparjo, 2010. Improving nutritive value of cocoa pod husk as feedstuff by bioporcesses with Phanerochaete chrysosporium with Mn2+ dan Ca2+. Ph.D. Thesis, Bogor Agricultural Institute, Bogor.

Kumar, V., 2013. Napier grass (Elephant grass) variety. http://agropedia.iitk.ac.in/content/napier-grass-elephant-grass-variety.

Nyambati, E.M., F.N. Muyekho, E. Onginjo and C.M. Lusweti, 2010. Production, characterization and nutritional quality of Napier grass [Pennisetum purpureum (Schum.)] cultivars in Western Kenya. Afr. J. Plant Sci., 4: 496-502.

Warly, L., Suyitman, Evitayani and A. Fariani, 2015. Supplementation of solid ex-decanter on performance of cattle fed palm fruit by-products. Pak. J. Nutr., 14: 818-821.

Imsya, A., 2013. Biodegradation of lignocellulosic of palm oil frond (Elaeis guineensis) by Phanerochaete chrysosporium as antioxidant and feedstuff for ruminant. Postgraduate Thesis, Bogor Agricultural University, Bogor, Indonesia.

Islam, M., 1999. Nutritional evaluation and utilisation of oil Palm (Elaeis guineensis) frond as feed for ruminants. Ph.D. Thesis, Universiti Putra Malaysia, Malaysia.

Dahlan, I., 2000. Oil palm frond, a feed for herbivores. Asian-Aust. J. Anim. Sci., 13: 300-303.

Radwinska, J. and K. Zarczynska, 2014. Effects of mineral deficiency on the health of young ruminants. J. Elementol., 19: 915-928.

Gurbuz, Y., 2007. Determination of nutritive value of leaves of several Vitis vinifera varieties as a source of alternative feedstuff for sheep using in vitro and in situ measurements. Small Rumin. Res., 71: 59-66.

NRC., 1981. Nutrient Requirements of Goats: Angora, Dairy and Meat Goats in Temperate and Tropical Countries. National Academy Press, Washington, DC., USA., ISBN-13: 9780309031851, Pages: 91.

Gurbuz, Y., 2009. Effects on methane gas emission of content of condensed tannin from some legume species. Cuban J. Agric. Sci., 43: 257-264.

Febrina, D., N. Jamarun, M. Zain and Khasrad, 2016. Effects of calcium (Ca) and manganese (Mn) supplementation during oil palm frond fermentation by Phanerochaete chrysosporium on in vitro digestibility and rumen fluid characteristics. Pak. J. Nutr., 15: 352-358.

Jarmuji, U. Santoso and B. Brata, 2017. Effect of oil palm fronds and Setaria sp. as forages plus sakura block on the performance and nutrient digestibility of Kaur cattle. Pak. J. Nutr., 16: 200-206.

McDonald, P., R.A. Edwards, J.F.D. Greenhalgh and C.A. Morgan, 2010. Animal Nutrition. 7th Edn., John Willey and Sons, New York, USA.

Rolls, E.T., 2007. Understanding the mechanisms of food intake and obesity. Obesity Rev., 8: 67-72.

Soetan, K.O., C.O. Olaiya and O.E. Oyewole, 2010. The importance of mineral elements for humans, domestic animals and plants: A review. Afr. J. Food Sci., 4: 200-222.

Rusli, N.D., K. Mat, C.H. Hasnita, M.W. Zahari, K. Azhar, M. Zamri-Saad and H.A. Hassim, 2016. Assessing the potential of oil palm frond juice as animal feed supplements by determining its nutrients, lignocellulosic and sugar contents. Proceedings of the 1st International Conference on Tropical Animal Science and Production, July 26-29, 2016, Bangkok, pp: 283-286.

Widiyanto , E. Pangestu, Surahmanto, V.D. Yunianto, B.I.M. Tampoebolon and B.W.H.E. Prasetiyono 2015. Effect of mineral supplementation and introduction of Setaria sphacelata grass and Gliricidia sepium legume on productivity of Kacang goat at Serang River Basin Upland Area, Central Java, Indonesia. Pak. J. Nutr., 14: 440-446.

Leng, R.A., 1990. Factors affecting the utilization of ‘poor-quality’ forages by ruminants particularly under tropical conditions. Nutr. Res. Rev., 3: 277-303.

Warly, L., Suyitman, Evitayani and A. Fariani, 2017. Nutrient digestibility and apparent bioavailability of minerals in beef cattle fed with different levels of concentrate and oil-palm fronds. Pak. J. Nutr., 16: 131-135.

Suyitman, L. Warly and Evitayani, 2013. S and P mineral supplementation of ammoniated palm leaves as ruminant feed. Pak. J. Nutr., 12: 903-906.

Al-Dobeeb, S.N., 2004. Evaluation of digestibility, nitrogen and sulfur balances and rumen fermentation of diets supplemented with urea and/or potassium sulfate in naeimi sheep. Pak. J. Biol. Sci., 7: 2216-2221.

Komisarczuk, B.S. and M. Durand, 1991. Effects of Minerals on Microbial Metabolism. In: Rumen Microbial Metabolism and Ruminant Digestion, Jouany, J.P. (Ed.). INRA, Paris, ISBN-13: 9782738003454, pp: 179-198.

Nurhaita, N. Jamarun, L. Warly and M. Zain, 2010. Digestibility of sheep ration containing ammoniated palm oil leaves supplemented with sulphur, phosphor and cassava leaves. Media Peternakan, 33: 144-149.

Zahari, M.W., O. Abu Hassan, H.K. Wong and J.B. Liang, 2003. Utilization of oil palm frond-based diets for beef and dairy production in Malaysia. Asian-Australasian J. Anim. Sci., 16: 625-634.

Musnandar, E., A. Hamidah and R.A. Muthalib, 2011. The effect of fermented oil palm fronds in diet on body weight gain and meat quality of goat. J. Indonesian Trop. Anim. Agric., 36: 120-125.

Suttle, N.F., 2010. Mineral Nutrition of Livestock. 4th Edn., CABI Publishing, London, ISBN: 9781845934729, Pages: 587.

Muhktarudin and Liman, 2006. Determination of utilization level of organic mineral to improve rumen bioprocess of goat by in vitro method. J. Ilmu-Ilmu Peternakan Indonesia, 8: 132-140.

Richter, E.L., 2011. The effect of dietary sulfur on performance, mineral status, rumen hydrogen sulfide and rumen microbial populations in yearling beef steers. M.Sc. Thesis, Iowa State University Ames, Iowa, USA.

Summer, P.G., 2013. The effect of sulfur in cattle diets with varying cation-anion balances upon feedlot performance, blood chemistry and body fluid compartments. Ph.D. Thesis, Iowa State University Ames, Iowa, USA.

Zain, M., N. Jamarun and Zulkarnaini, 2010. Effect of phosphorus and sulphur supplementation in growing beef cattle diet based on rice straw ammoniated. Asian J. Scient. Res., 3: 184-188.

Ramirez, J.E., E.G. Alvarez, M. Montano, Y. Shen and R.A. Zinn, 1998. Influence of dietary magnesium level on growth-performance and metabolic responses of Holstein steers to laidlomycin propionate. J. Anim. Sci., 76: 1753-1759.

Martawidjaja, M.J., B. Setiadi and S.S. Sitorus, 1999. The effect of protein-energy levels dietary on Kacang goats performances. J. Ilmu Ternak dan Veteriner, 4: 167-173.

Wulandari, S., A. Agus, M. Soejono, M.N. Cahyanto and R. Utomo, 2014. Performance of sheep fed cocoa pod based-fermented complete feed and its in-vivo nutrients digestion. Buletin Peternakan, 38: 42-50.

Simanihuruk, K., 2009. Utilization of Passion fruit hulls (Passiflora edulis Sims f. edulis Deg) as component of complete feed for growing Kacang goats. Indonesian J. Anim. Vet. Sci., 14: 36-44.

Downloads

Published

15.07.2017

Issue

Section

Research Article

How to Cite

Febrina, D., Jamarun, N., Zain, M., & Khasrad. (2017). Effects of Using Different Levels of Oil Palm Fronds (FOPFS) Fermented with Phanerochaete chrysosporium plus Minerals (P, S and Mg) Instead of Napier Grass on Nutrient Consumption and the Growth Performance of Goats. Pakistan Journal of Nutrition, 16(8), 612–617. https://doi.org/10.3923/pjn.2017.612.617

Most read articles by the same author(s)

<< < 1 2