Effects of Calcium (Ca) and Manganese (Mn) Supplementation During Oil Palm Frond Fermentation by Phanerochaete chrysosporium on In vitro Digestibility and Rumen Fluid Characteristics

Authors

  • Dewi Febrina Faculty of Agriculture and Animal Science, State Islamic University of Sultan Syarif Kasim Riau, Indonesia
  • Novirman Jamarun Faculty of Animal Science, Andalas University, Padang, Indonesia
  • Mardiati Zain Faculty of Animal Science, Andalas University, Padang, Indonesia
  • Khasrad Faculty of Animal Science, Andalas University, Padang, Indonesia

DOI:

https://doi.org/10.3923/pjn.2016.352.358

Keywords:

Ca, Mn, oil palm frond, Phanerochaete chrysosporium

Abstract

The objectives of the study were to evaluate the effects of calcium and manganese supplementation during oil palm frond fermentation by Phanerochaete chrysosporium on in vitro digestibility and rumen fluid characteristics. This research used a Completely Randomized Design comprising two factors as treatments and each treatment was repeated three times. The factors were Ca dose (1.000, 2.000 and 3.000 ppm) and Mn dose (50, 100 and 150 ppm). The data were analyzed using analysis of variance to measure the differences among treatments; Duncan's Multiple Range Test was used to determine the significance of differences. The parameters measured were as follows: digestibility of dry matter (%), organic matter (%), Neutral Detergent Fibre (NDF) (%), Acid Detergent Fibre (ADF) (%), cellulose (%) and hemicellulose (%). The rumen fluid characteristics considered included the following: pH and the concentrations of NH3 (mM) and Volatile Fatty Acid (VFA) (mM). The results indicated interactions between Ca and Mn in relation to the digestibility of dry matter, organic matter, NDF, ADF, cellulose, pH, NH3 and VFA concentration of rumen fluid. The optimal combination of the minerals used were 2.000 ppm of Mn and 150 ppm of Ca; these values yielded the highest values of digestibility of dry matter (41.914%), organic matter (40.990%), NDF (66.429%), ADF (64.396%) and cellulose (68.524%) and the highest concentration of VFA (117.302 mM).

References

Aitken, M.D., R. Venkatadri and R.L. Irvine, 1989. Oxidation of phenolic pollutants by a lignin degrading enzyme from the white-rot fungus Phanerochaete chrysosporium. Water Res., 23: 443-450.

Ali, A.I.M., S. Sandi, A. Imsya, A. Prabowo and N. Rofiq, 2015. Evaluation of yeast supplementation with urea-molasses in rice straw-based diets on in vitro ruminal fermentation. Pak. J. Nutr., 14: 988-993.

Alimon, A.R., 2005. The nutritive value of palm kernel cake for animal feeds. Palm Oil Developments, Vol. 40, Malaysian Palm Oil Board, Kuala Lumpur, Malaysia, pp: 12-14.

Alwi, M., S. Wardhana and FM. Suhartati, 2013. Sugarcane baggase fermentation using Phanerochaete chrysosporium as effort to increase rumen fermentation products in vitro. Jurnal Ilmiah Peternakan, 1: 479-487.

AOAC., 1995. Official Methods of Analysis of the Association of Official Analytical Chemists. Association of Official Analytical Chemists, Washington, DC.

Arora, S.P., 1995. Microbial Digestion in the Ruminant. Gadjah Mada University Press, Yogyakarta.

Baldrian, P., 2003. Interactions of heavy metals with white-rot fungi. Enzyme Microb. Technol., 32: 78-91.

Balgees, A., A. Elmnan, A.M.A.F. Elseed and A.M. Salih, 2009. Effects of Albizia lebbeck or wheat bran supplementation on intake, digestibility and rumen fermentation of ammoniated bagasse. J. Applied Sci. Res., 5: 1002-1006.

Brown, J.A., J.K. Glen and M.H. Gold, 1990. Manganese regulates expression of manganese peroxidase by Phanerochaete chrysosporium. J. Bacteriol., 172: 3125-3130.

Chahal, P.S. and D.S. Chahal, 1999. Lignocellulose Waste: Biological Conversion. In: Bioconversion of Waste Materials to Industrial Products, Martin, A.M. (Ed.). 2nd Edn., Blackie Academic and Professional, London, pp: 376-422.

Elihasridas, 2012. The effect of supplementation of mineral Zinc on in vitro digestibility of amoniated corn cobs ration. J. Peternakan, 9: 9-14.

Erdman, R.A., 1988. Dietary buffering requirements of the lactating dairy cow: A review. J. Dairy Sci., 71: 3246-3266.

Fariani, A., A. Abrar, G. Muslim and L. Warly, 2015. Supplementation of fermented palm press fibre on digestibility of rice straw and rumen bacteria profile. Pak. J. Nutr., 14: 80-83.

Febrina, D., N. Jamarun, M. Zain, Khasrad and R. Mariani, 2014. Biological delignification by Phanerochaete chrysosporium with addition of mineral Mn and its effect on nutrient content of oil palm frond. Proceedings of the 16th AAAP Animal Science Congress, November 10-14, 2014, Yogyakarta, Indonesia, pp: 1723-1726.

Feng, C.L., G.M. Zeng, D.L. Huang, S. Hu and M.H. Zhao et al., 2011. Effect of ligninolytic enzymes on lignin degradation and carbon utilization during lignocellulosic waste composting. Process Biochem., 46: 1515-1520.

Fragoeiro, S. and N. Magan, 2005. Enzymatic activity, osmotic stress and degradation of pesticide mixtures in soil extract liquid broth inoculated with Phanerochaete chrysosporium and Trametes versicolor. Environ. Microbiol., 7: 348-355.

Gusse, A.C., P.D. Miller, T.J. Volk, 2006. White-rot fungi demonstrate first biodegradation of phenolic resin. Environ. Sci. Technol., 40: 4196-4199.

Hammel, K.E., 1997. Fungal Degradation of Lignin. In: Plant Litter Quality and Decomposition, Cadisch, G. and K.E. Giller (Eds.). US Department of Agriculture, Madison, USA., pp: 33-45.

Huang, D.L., G.M. Zeng, C.L. Feng, S. Hu and M.H. Zhao et al., 2010. Mycelial growth and solid-state fermentation of lignocellulosic waste by white-rot fungus Phanerochaete chrysosporium under lead stress. Chemosphere, 81: 1091-1097.

Kawamoto, H., W.Z. Mohamed, N.I.M. Shukur, M.S.M. Ali, Y. Ismail and S. Oshio, 2001. Palatability, digestibility and voluntary intake of processed oil Palm fronds in cattle. Jap. Agric. Res. Quart., 35: 195-200.

Kerem, Z. and Y. Hadar, 1997. The Role of Manganese in Enhanced Lignin Degradation by Pleurotus Ostreatus. TAPPI Press, Atlanta, GA.

Kerem, Z. and Y. Hadar, 1995. Effect of manganese on preferential degradation of lignin by Pleurotus ostreatus during solid-state fermentation. Applied Environ. Microbiol., 61: 3057-3062.

Liu, J.X., A. Susenbeth and K.H. Sudekum, 2002. In vitro gas production measurements to evaluate interactions between untreated and chemically treated rice straws, grass hay and mulberry leaves. J. Anim. Sci., 80: 517-524.

Lopez, M.J., M.D.C. Vargas-Garcia, F. Suarez-Estrella, N.N. Nichols, B.S. Dien and J. Moreno, 2007. Lignocellulose-degrading enzymes produced by the ascomycete Coniochaeta ligniaria and related species: Application for a lignocellulosic substrate treatment. Enzyme Microb. Technol., 40: 794-800.

Lynch, J.M., 1993. Substrate Availability in the Production of Composts. In: Science and Engineering of Composting: Design, Environmental, Microbiological and Utilization Aspects, Hoitink, H.A.J. and H.M. Keener (Eds.). Renaissance Publications, Ohio, pp: 24-35.

McDonald, P., R.A. Edwards, J.F.D. Greenhalgh and C.A. Morgan, 2010. Animal Nutrition. 7th Edn., John Willey and Sons, New York, USA.

MoA., 2014. Data center and information systems. Ministry of Agriculture, Jakarta, Indonesia.

Moore, K.J. and H.J.G. Jung, 2001. Lignin and fiber digestion. J. Range Manage., 54: 420-430.

Muhktarudin and Liman, 2006. Determination of utilization level of organic mineral to improve rumen bioprocess of goat by in vitro method. J. Ilmu-Ilmu Peternakan Indonesia, 8: 132-140.

Okano, K., Y. Iida, M. Samsuri, B. Prasetya, T. Usagawa and T. Watanabe, 2006. Comparison of in vitro digestibility and chemical composition among sugarcane bagasses treated by four white-rot fungi. Anim. Sci. J., 77: 308-313.

Srebotnik, E., K.A. Jensen Jr. and K.E. Hammel, 1994. Fungal degradation of recalcitrant nonphenolic lignin structures without lignin peroxidase. Proc. Natl. Acad. Sci. USA., 91: 12794-12797.

Sudekum, H.K., F. Brusemeister, A. Schroder and M. Stangassinger, 2006. Effects of amount of intake and stage of forage maturity on urinary allantoin excretion and estimated microbial crude protein synthesis in the rumen of steers. J. Anim. Physiol. Anim. Nutr., 90: 136-145.

Sun, Y. and J. Cheng, 2002. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol., 83: 1-11.

Suparjo, 2010. Improving nutritive value of cocoa pod husk as feedstuff by bioporcesses with Phanerochaete chrysosporium with Mn2+ dan Ca2+. Disertasi Sekolah Pascasarjana, Institut Pertanian Bogor, Bogor.

Suyitman, L. Warly and Evitayani, 2013. Palm leaf processing as ruminant feeds. Pak. J. Nutr., 12: 213-218.

Tang, L., G.M. Zeng, G.L. Shen, Y. Zhang, G.H. Huang and J.B. Li, 2006. Simultaneous amperometric determination of lignin peroxidase and manganese peroxidase activities in compost bioremediation using artificial neural networks. Anal. Chim. Acta, 579: 109-116.

Tilley, J.M.A. and R.A. Terry, 1963. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci., 18: 104-111.

Tripathi, M.K., A.S. Mishra, A.K. Misra, S. Vaithiyanathan, R. Prasad and R.C. Jakhmola, 2008. Selection of white-rot basidiomycetes for bioconversion of mustard (Brassica compestris) straw under solid-state fermentation into energy substrate for rumen micro-organism. Lett. Applied Microbiol., 46: 346-370.

Urek, R.O. and N.K. Pazarlioglu, 2005. Production and stimulation of manganese peroxidase by immobilized Phanerochaete chrysosporium. Process Biochem., 40: 83-87.

van Soest, P.J., J.B. Robertson and B.A. Lewis, 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583-3597.

Waldron, M.R., F.N. Schrick, J.D. Quigley, J.L. Klotz, A.M. Saxton and R.N. Heitmann, 2002. Volatile fatty acid metabolism by epithelial cells isolated from different areas of the ewe rumen. J. Anim Sci., 80: 270-278.

Wen, X., Y. Jia and X. Li, 2009. Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporium-A white rot fungus. Chemosphere, 75: 1003-1007.

Wuyep, P.A., A.U. Khan and A.J. Nok, 2003. Production and regulation of lignin degrading enzymes from Lentinus squarrosulus (mont.) Singer and Psathyrella atroumbonata Pegler. Afr. J. Biotechnol., 2: 444-447.

Zahari, M.W. and A.R. Alimon, 2005. Use of palm kernel cake and oil palm by-products in compound feed. Palm Oil Dev., 40: 5-9.

Zain, M., J. Rahman and Khasrad, 2014. Effect of palm oil by products on in vitro fermentation and nutrient digestibility. Anim. Nutr. Feed Technol., 14: 175-181.

Zeng, G.M., H.Z. Mei, L.H. Dan, L. Cui and H. Chao et al., 2013. Purification and biochemical characterization of two extracellular peroxidases from Phanerochaete chrysosporium responsible for lignin biodegradation. Int. Biodeteriorat. Biodegradat., 85: 166-172.

Zhao, J., T.H. de Koker and B.J.H. Janse, 1996. Comparative studies of lignin peroxidases and manganese-dependent peroxidases produced by selected white rot fungi in solid media. FEMS Microbiol. Lett., 145: 393-399.

Downloads

Published

15.03.2016

Issue

Section

Research Article

How to Cite

Febrina, D., Jamarun, N., Zain, M., & Khasrad. (2016). Effects of Calcium (Ca) and Manganese (Mn) Supplementation During Oil Palm Frond Fermentation by Phanerochaete chrysosporium on In vitro Digestibility and Rumen Fluid Characteristics. Pakistan Journal of Nutrition, 15(4), 352–358. https://doi.org/10.3923/pjn.2016.352.358

Most read articles by the same author(s)