Microbial Protein Synthesis and in vitro Fermentability of Fermented Oil Palm Fronds by Phanerochaete chrysosporium in Combination with Tithonia (Tithonia diversifolia) and Elephant Grass (Pennisetum purpureum)
DOI:
https://doi.org/10.3923/pjn.2018.462.470Keywords:
Elephant grass, FOPF, In vitro fermentability, MPS, tithoniaAbstract
Objective: The aim of this research was to measure microbial protein synthesis (MPS) in Phanerochaete chrysosporium and determine its in vitro nutrient digestibility and fermentability of fermented oil palm fronds (FOPF) under supplementation with Ca, P and Mn minerals and grown with tithonia (T) and elephant grass (EG). Methodology: This study used a randomized block design consisting of four treatment groups: T1 = 20% FOPF+16% T+64% EG, T2 = 40% FOPF+12% T+48% EG, T3 = 60% FOPF+8%, T+32% EG and T4 = 80% FOPF+4% T+16% EG. Four replicates were used per treatment. The data were analyzed using one-way analysis of variance (ANOVA) and differences among the means were tested using Duncan’s multiple range tests (DMRT) with 5 and 1% confidence intervals. The variables measured were crude protein (CP) digestibility (CPD), cellulose digestibility (CD), ammonia (NH3) concentration, total volatile fatty acid (VFA) content and fluid ruminal pH values as indicators of fermentability and MPS. Results: The results showed that CPD, CD, NH3 concentration, VFA content and MPS were the highest (p<0.01) in the T1 treatment. However, pH was lowest (p<0.01) in T1. Conclusion: The combination of 20% FOPF+16% T+64% EG had the best effect on MPS, in vitro nutrient digestibility and fermentability.
References
Mardiharini, M., D. Setiadi and Ramdhan, 2013. The ability of dairy farmers to ahieve self-sufficiency in milk. http://peternakan.litbang.pertanian.go.id/fullteks/booklet/percepatan_produksi_susu_2012/Dddug_6.pdf?secure=1.
Fakhri, S., B.L. Ginting, R. Murni, Nelson and Akmal, 2006. Potential evaluation oil palm fronds as feed ruminant livestock. Research Report, Faculty of Animal Husbandry, University of Jambi.
Jamarun, N., M. Zein, Arief and R. Pazla, 2018. Populations of rumen microbes and the in vitro digestibility of fermented oil palm fronds in combination with Tithonia (Tithonia diversifolia) and elephant grass (Pennisetum purpureum). Pak. J. Nutr., 17: 39-45.
Zain, M., J. Rahman and Khasrad, 2014. Effect of palm oil by products on in vitro fermentation and nutrient digestibility. Anim. Nutr. Feed Technol., 14: 175-181.
Imsya, E.B., K.G. Laconi, Wiryawan and Y. Widyastuti, 2013. Identification of phenolic compounds and its antioxidant activity from lignin palm oil frond fermented with Phanerochyte chrysosporium. Proceedings of the 4th International Conference on Sustainable Animal Agriculture for Developing Countries, July 23-31, 2013, University Lanzhou, China, pp: 310-312.
De Koker, T.H., K.K. Nakasone, J. Haarhof, H.H. Burdsall Junior and B.J.H. Janse, 2003. Phylogenetic relationships of the genus Phanerochaete inferred from the internal transcribed spacer region. Mycol. Res., 107: 1032-1040.
Shi, J., R.R. Sharma-Shivappa and M.S. Chinn, 2009. Microbial pretreatment of cotton stalks by submerged cultivation of Phanerochaete chrysosporium. Bioresour. Biotechnol., 100: 4388-4395.
Singh, D. and S. Chen, 2008. The white-rot fungus Phanerochaete chrysosporium: Conditions for the production of lignin-degrading enzymes. Applied Microbiol. Biotechnol., 81: 399-417.
Jamarun, N., M. Zain, Arief and R. Pazla, 2017. Effects of calcium, phosphorus and manganese supplementation during oil palm frond fermentation by Phanerochaete chrysosporium on laccase activity and in vitro digestibility. Pak. J. Nutr., 16: 119-124.
Jamarun, N., M. Zain, Arief and R. Pazla, 2017. Effects of Calcium (Ca), Phosphorus (P) and Manganese (Mn) supplementation during oil palm frond fermentation by Phanerochaete chrysosporium on rumen fluid characteristics and microbial protein synthesis. Pak. J. Nutr., 16: 393-399.
Febrina, D., N. Jamarun, M. Zain and Khasrad, 2016. The effects of P, S and Mg supplementation of oil palm fronds fermented by Phanerochaete chrysosporium on rumen fluid characteristics and microbial protein synthesis. Pak. J. Nutr., 15: 299-304.
Hakim, N., 2001. Possible use of Titonia (Tithonia diversifolia) as source of organic ingredients and nitrogen. Research Report Research Center for Utilization of Nuclear Science and Technology (P3IN) Unand, Padang, Indonesia.
Jamarun, N., Elihasridas, R. Pazla and Fitriyani, 2017. In vitro nutrients digestibility of the combination Titonia (Tithonia difersivolia) and Napier grass (Pennisetum purpureum). Proceedings of the 7th International Seminar on Tropical Animal Production, September 12-14, 2017, Yogyakarta, Indonesia.
Jama, B., C.A. Palm, R.J. Buresh, A. Niang, C. Gachengo, G. Nziguheba and B. Amadalo, 2000. Tithonia diversifolia as a green manure for soil fertility improvement in Western Kenya: A review. Agrofor. Syst., 49: 201-221.
Fasuyi, A.O., F.A.S. Dairo and F.J. Ibitayo, 2010. Ensiling wild sunflower (Tithonia diversifolia) leaves with sugar cane molasses. Livest. Res. Rural Dev., Vol. 22, No. 3.
Jamarun, N., Elihasridas, R. Pazla and Fitriyani, 2017. In vitro nutrients digestibility and rumen fluid characteristics of the combination Titonia (Tithonia difersivolia) and napier grass (Pennisetum purpureum). Proceedings of the 3th Nasional Seminar on Cows and Buffalo, Oktober 4-5, 2017, Padang, Indonesia.
Suryani, N.N., M. Budiasa, I. Ketut, A. Astawa and I. Putu, 2014. Fermentasi rumen dan sintesis protein mikroba kambing peranakan ettawa yang diberi pakan dengan komposisi hijauan beragam dan level konsentrat berbeda. Majalah Ilmiah Peternakan, Vol. 17, No. 2.
Tilley, J.M.A. and R.A. Terry, 1963. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci., 18: 104-111.
AOAC., 1995. The Official Method of Analysis of the Association of Official Analytical Chemists. 16th Edn., Association of Official Analytical Chemists, Washington DC.
van Soest, P.J., J.B. Robertson and B.A. Lewis, 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583-3597.
Plummer, D.T., 1971. An Introduction to Practical Biochemistry. 1st Edn., MacGraw Hill Publishers, London.
Rahayu, S., N. Jamarun, M. Zain and D. Febrina, 2015. Influence of mineral dosage of Ca and long fermentation of palm oil to lignin contents, digestibility of DM, OM, CP and fiber fraction (NDF, ADF, hemicellulosa and cellulose) using Phanerochaete chrysosporium Kapang. J. Peternakan Indonesia, 17: 151-162.
Elihasridas, 2012. The effect of supplementation of mineral Zinc on in vitro digestibility of amoniated corn cobs ration. J. Peternakan, 9: 9-14.
Oluwasola, T.A. and F.A.S. Dairo, 2016. Proximate composition, amino acid profile and some anti-nutrients of Tithonia diversifolia cut at two different times. Afr. J. Agric. Res., 11: 3659-3663.
Lamid, M., 2012. Karakterisasi enzim fitase asal bakteri rumen (Actinobacillus sp. dan Bacillus pumilus) dan analisis SEM terhadap perubahan struktur permukaan dedak padi untuk ransum ayam broiler. Universitas Airlangga. http://onesearch.id/Record/IOS3215.43180.
Hernaman, I., T. Toharmat, W. Manalu and P.I. Pudjiono, 2007. [Study on Zn-fitat processing and its degradation in rumen fluid]. J. Indon. Trop. Anim. Agric., 32: 139-145, (In Indonesian).
Bravo, D., D. Sauvant, C. Bogaert and F. Meschy, 2003. II. Quantitative aspects of phosphorus absorption in ruminants. Reprod. Nutr. Dev., 43: 271-284.
Rodehutscord, M., H. Heuvers and E. Pfeffer, 2000. Effect of organic matter digestibility on obligatory faecal phosphorus loss in lactating goats, determined from balance data. Anim. Sci., 70: 561-568.
Febrina, D., N. Jamarun, M. Zain and Khasrad, 2017. Digestibility of goat rations containing fermented oil palm fronds by Phanerochaete chrysosporium supplemented with phosphorus, sulfur and magnesium. J. Biol. Sci., 17: 298-304.
Pazla, R., 2015. Productivity of sheep fed complete feed with ammonia cocoa waste supplemented with Saccharomyces sp. and minerals (Phosphorus and Sulfur). Post Graduate Thesis, Andalas University, Padang, Indonesia.
Zain, M., N. Jamarun and A.S. Tjakradidjaja, 2010. Phosphorus supplementation of ammoniated rice straw on rumen fermentability, synthesised microbial protein and degradability in vitro. World Acad. Sci. Eng. Technol., 4: 357-359.
Zain, M., N. Jamarun and Zulkarnaini, 2010. Effect of phosphorus and sulphur supplementation in growing beef cattle diet based on rice straw ammoniated. Asian J. Scient. Res., 3: 184-188.
Lu, C.D., J.R. Kawas and O.G. Mahgoub, 2005. Fibre digestion and utilization in goats. Small Rumin. Res., 60: 45-52.
Enari, T.M., 1983. Microbial cellulases. In: Microbial enzymes and biotechnology, Fogarty, W.M., Ed., Vol. 4, Applied Science, London, pp: 183-223.
Suyitman, L. Warly, A. Rachmat and D.R. Ramadhan, 2015. Effect of minerals S, P and cassava flour leaf supplemented with ammoniation palm leaves on the performance of beef cattle. Pak. J. Nutr., 14: 849-853.
Mariani, R., 2014. Evaluation of in vitro digestibility delignification of palm frond with Phanerochaete chrysosporium supplemented with mineral Mn. Post Graduate Thesis, Andalas University, Padang, Indonesia.
McDonald, P., R.A. Edwards, J.F.D. Greenhalgh and C.A. Morgan, 2010. Animal Nutrition. 7th Edn., John Willey and Sons, New York, USA.
Paengkoum, P., J.B. Liang, Z.A. Jelan and M. Basery, 2006. Utilization of steam-treated oil palm fronds in growing saanen goats: II. Supplementation with energy and urea. Asian-Aust. J. Anim. Sci., 19: 1623-1631.
Muhktarudin and Liman, 2006. Penentuan tingkat penggunaan mineral organik untuk memperbaiki bioproses rumen pada kambing secara in vitro. J. Ilmu-Ilmu Peternakan Indonesia, 8: 132-140.
Orskov, E.R., 1992. Protein Nutrition in Ruminants. 2nd Edn., Academic Press, San Diego, CA., USA.
Febrina, D., N. Jamarun, M. Zain and Khasrad, 2016. Effects of calcium (Ca) and manganese (Mn) supplementation during oil palm frond fermentation by Phanerochaete chrysosporium on in vitro digestibility and rumen fluid characteristics. Pak. J. Nutr., 15: 352-358.
Waldron, M.R., F.N. Schrick, J.D. Quigley, J.L. Klotz, A.M. Saxton and R.N. Heitmann, 2002. Volatile fatty acid metabolism by epithelial cells isolated from different areas of the ewe rumen. J. Anim Sci., 80: 270-278.
Sutardi, T., 1980. Landasan Ilmu Nutrisi. Jilid 1. Diktat. Departemen Ilmu makanan Ternak. Fakultas Peternakan. Institut Pertanian Bogor, Bogor, pp: 91-103.
Erdman, R.A., 1988. Dietary buffering requirements of the lactating dairy cow: A review. J. Dairy Sci., 71: 3246-3266.
van Soest, P.J., 1994. Nutritional Ecology of the Ruminant. 2nd Edn., Cornell University Press, Ithaca, New York, Pages: 476.
Kamra, D.N., 2005. Rumen microbial ecosystem. Curr. Sci., 89: 124-135.
Hindratiningrum, N., M. Bata and S.A. Santosa, 2011. Produk fermentasi rumen dan produksi protein mikroba sapi lokal yang diberi pakan jerami amoniasi dan beberapa bahan pakan sumber energi. J. Agripet, 11: 29-34.
Gosselink, J.M.J., C. Poncet, J.P. Dulphy and J.W. Cone, 2003. Estimation of the duodenal flow of microbial nitrogen in ruminants based on the chemical composition of forages: A literature review. Anim. Res., 52: 229-243.
Karsli, M.A. and J.R. Russell, 2001. Effects of some dietary factors on ruminal microbial protein synthesis. Turk. J. Vet. Anim. Sci., 25: 681-686.
Hoover, W.H. and S.R. Stokes, 1991. Balancing carbohydrates and proteins for optimum rumen microbial yield. J. Dairy Sci., 74: 3630-3644.
Downloads
Published
Issue
Section
License
Copyright (c) 2018 The Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.