Optimization of Glutamate Production from Lactobacillus plantarum Originating from Minangkabau Fermented Food as a Feed Supplement for Broiler
DOI:
https://doi.org/10.3923/pjn.2018.336.343Keywords:
Building block, fermentation food, glutamate, Lactobacillus plantarum, Minangkabau, umamiAbstract
Background and Objective: Glutamate is a non-essential amino acid and it improves the perception of the taste umami and serves as a building block of protein and physiological functions of the body. Increased use of glutamate in animal feed causes glutamate to rise globally. The aim of this study was to obtain the optimal conditions for glutamate production by Lactobacillus plantarum VM. Materials and Methods: Lactobacillus plantarum VM (L. plantarum VM) is a lactic acid bacteria originating from Minangkabau fermented foods and produces glutamate. The increased production of glutamate from Lactobacillus plantarum VM can be achieved by improving the nutrition and the growth environment of the bacteria. This study was designed in the form of a laboratory experiment protocol and was repeated 3 times. The variables measured in this study were the medium pH, temperature, incubation time, carbon source and nitrogen source. Results: The results of this study showed an optimum 5.5 pH (161.519 mg L–1), incubation time (36 h), temperature (36°C) (350.001 mg L–1), 11% glucose (566,535 mg L–1) and 0.5% peptone (680.525 mg L–1). Conclusion: Optimization of the initial pH of the media, incubation time, temperature, source C and source N can increase glutamate production.
References
Yamaguchi, S. and K. Ninomiya, 2000. Umami and food palatability. J. Nutr., 130: 921S-926S.
Pierre-Andre, G. and M. Yves, 2004. Amino acids: Beyond the building blocks. The Poultry Federation.
Meffert, M.K., J.M. Chang, B.J. Wiltgen, M.S. Fanselow and D. Baltimore, 2003. NF-κB functions in synaptic signaling and behavior. Nat. Neurosci., 6: 1072-1078.
Zulkifli, I., M. Shakeri and A.F. Soleimani, 2016. Dietary supplementation of L-glutamine and L-glutamate in broiler chicks subjected to delayed placement. Poult. Sci., 95: 2757-2763.
Ebadiasl, G., 2011. Effects of supplemental glutamine and glutamate on growth performance, gastrointestinal development, jejunum morphology and Clostridium perfringens count in caecum of broilers. Ph.D. Thesis, Department of Animal Nutrition and Management, Swedish University of Agricultural Science, Sweden.
Bezerra, R.M., F.G.P. Costa, P.E.N. Givisiez, E.R. Freitas and C.C. Goulart et al., 2016. Effect of L-glutamic acid supplementation on performance and nitrogen balance of broilers fed low protein diets. J. Anim. Physiol. Anim. Nutr., 100: 590-600.
Berres, J., S.L. Vieira, W.A. Dozier III, M.E.M. Cortes, R. de Barros, E.T. Nogueira and M. Kutschenko, 2010. Broiler responses to reduced-protein diets supplemented with valine, isoleucine, glycine and glutamic acid. J. Applied Poult. Res., 19: 68-79.
Fujimura, S., F. Sakai and M. Kadowaki, 2001. Effect of restricted feeding before marketing on taste active components of broiler chickens. J. Anim. Sci., 72: 223-229.
Sano, C., 2009. History of glutamate production. Am. J. Clin. Nutr., 90: 728S-732S.
Radian Insight, 2004. Global amino acid market size is estimated to reach 10.1 million tons by 2022. http://www.abnewswire.com/pressreleases/global-amino-acids-market-to-reach-101-million-tons-by-2022_146363.html.
Choi, S.U., T. Nihira and T. Yoshida, 2004. Enhanced glutamic acid production of Brevibacterium sp. with temperature shift-up cultivation. J. Biosci. Bioeng., 98: 211-213.
Shirai, T., A. Nakato, N. Izutani, K. Nagahisa and S. Shioya et al., 2005. Comparative study of flux redistribution of metabolic pathway in glutamate production by two coryneform bacteria. Metab. Eng., 7: 59-69.
Niaz, B., S. Nadeem, H.M. Muzammil, J.A. Khan and T. Zahoor, 2009. Optimization of fermentation conditions for enhanced glutamic acid production by a strain of Corynebacterium glutamicum NIAB BNS-14. Pak. J. Zool., 41: 261-267.
Zareian, M., A. Ebrahimpour, A.K.S. Mohamed and N. Saari, 2013. Modeling of glutamic acid production by Lactobacillus plantarum MNZ. Electron. J. Biotechnol., 16: 1-16.
Nadeem, S., B. Niaz, H.M. Muzammil, S.M. Rana, M.I. Rajoka and A.R. Shakoori, 2011. Optimising carbon and nitrogen sources for L-glutamic acid production by Brevibacterium strain NIAB SS-67. Pak. J. Zool., 43: 285-290.
Nakamura, J., S. Hirano, H. Ito and M. Wachi, 2007. Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce L-glutamic acid production. Applied Environ. Microbiol., 73: 4491-4498.
Yang, S.Y., F.X. Lu, Z.X. Lu, X.M. Bie, Y. Jiao, L.J. Sun and B. Yu, 2008. Production of γ-aminobutyric acid by Streptococcus salivarius subsp. thermophilus Y2 under submerged fermentation. Amino Acids, 34: 473-478.
Zareian, M., A. Ebrahimpour, F.A. Bakar, A.K.S. Mohamed, B. Forghani, M.S.B. Ab-Kadir and N. Saari, 2012. A glutamic acid-producing lactic acid bacteria isolated from Malaysian fermented foods. Int. J. Mol. Sci., 13: 5482-5497.
Zacharof, M.P. and R.W. Lovitt, 2010. Development of an optimised growth strategy for intensive propagation, lactic acid and bacteriocin production of selected strains of Lactobacilli genus. Int. J. Chem. Eng. Applic., 1: 55-63.
Yang, E., L. Fan, J. Yan, Y. Jiang, C. Doucette, S. Fillmore and B. Walker, 2018. Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express, Vol. 8, No. 1.
Eggeling, L. and M. Bott, 2005. Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, FL., USA.
Asakura, Y., E. Kimura, Y. Usuda, Y. Kawahara, K. Matsui, T. Osumi and T. Nakamatsu, 2007. Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum. Applied Environ. Microbiol., 73: 1308-1319.
Jaichumjai, P., R. Valyasevi, A. Assavanig and P. Kurdi, 2010. Isolation and characterization of acid-sensitive Lactobacillus plantarum with application as starter culture for Nham production. Food Microbiol., 27: 741-748.
Lawal, A.K., B.A. Oso, A.I. Sanni and O.O. Olatunji, 2011. L-Glutamic acid production by Bacillus spp. isolated from vegetable proteins. Afr. J. Biotechnol., 10: 5337-5345.
Ahmed, Y.M., J.A. Khan, K.A. Abulnaja and A.L. Al-Malki, 2013. Production of glutamic acid by Corynebacterium glutamicum using dates syrup as carbon source. Afr. J. Microbiol., 7: 2071-2077.
Nampoothiri, K.M. and A. Pandey, 1996. Urease activity in a glutamate producing Brevibacterium sp. Process Biochem., 31: 471-475.
Sanchez-Peinado, M.D.M., J. Gonzalez-Lopez, B. Rodelas, V. Galera, C. Pozo and M.V. Martinez-Toledo, 2008. Effect of linear alkylbenzene sulfonates on the growth of aerobic heterotrophic cultivable bacteria isolated from an agricultural soil. Ecotoxicology, 17: 549-557.
Lehniger, A.L., D.L. Nelson and M.M. Cox, 1993. Principles of Biochemistry. 2nd Edn., Worth, New York, pp: 268-274.
Uy, D., S. Delaunay, P. Germain, J.M. Engasser and J.L. Goergen, 2003. Instability of glutamate production by Corynebacterium glutamicum 2262 in continuous culture using the temperature-triggered process. J. Biotechnol., 104: 173-184.
Rizal, Y. and G. Wu, 2012. Metabolisme Protein dan Asam-Asam Amino. Andalas University Press, Padang.
Williams, A.G., S.E. Withers, E.Y. Brechany and J.M. Banks, 2006. Glutamate dehydrogenase activity in Lactobacilli and the use of glutamate dehydrogenase-producing adjunct Lactobacillus spp. cultures in the manufacture of cheddar cheese. J. Applied Microbiol., 101: 1062-1075.
Kiefer, P., E. Heinzle and C. Wittmann, 2002. Influence of glucose, fructose and sucrose as carbon sources on kinetics and stoichiometry of lysine production by Corynebacterium glutamicum. J. Ind. Microbiol. Biotechnol., 28: 338-343.
Li, P., Y.L. Yin, D. Li, S.W. Kim and G. Wu, 2007. Amino acids and immune function. Br. J. Nutr., 98: 237-252.
Savijoki, K., H. Ingmer and P. Varmanen, 2006. Proteolytic systems of lactic acid bacteria. Appl. Microbiol. Biotechnol., 71: 394-406.
Letort, C. and V. Juillard, 2001. Development of a minimal chemically-defined medium for the exponential growth of Streptococcus thermophilus. J. Applied Microbiol., 91: 1023-1029.
Barrangou, R., S.J. Lahtinen, F. Ibrahim and A.C. Ouwehand, 2011. Genus Lactobacilli. In: Lactic Acid Bacteria: Microbiological and Functional Aspects, Lahtinne, S., S. Salminen, A. von Wright and A. Ouwehand (Eds.)., CRC Press, London, pp: 77-92.
Burkovski, A., 2003. Ammonium assimilation and nitrogen control in Corynebacterium glutamicum and its relatives: An example for new regulatory mechanisms in actinomycetes. FEMS Microbiol. Rev., 27: 617-628.
Meier-Wagner, J., L. Nolden, M. Jakoby, R. Siewe, R. Kramer and A. Burkovski, 2001. Multiplicity of ammonium uptake systems in Corynebacterium glutamicum: Role of Amt and AmtB. Microbiology, 147: 135-143.
Jakoby, M., L. Nolden, J. Meierâ€Wagner, R. Kramer and A. Burkovski, 2000. AmtR, a global repressor in the nitrogen regulation system of Corynebacterium glutamicum. Mol. Microbiol., 37: 964-977.
De Angelis, M., M. Calasso, R. di Cagno, S. Siragusa, F. Minervini and M. Gobbetti, 2010. NADPâ€glutamate dehydrogenase activity in nonstarter lactic acid bacteria: Effects of temperature, pH and NaCl on enzyme activity and expression. J. Applied Microbiol., 109: 1763-1774.
Downloads
Published
Issue
Section
License
Copyright (c) 2018 The Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.